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Abstract

Multi-period forecasts of stock market return volatilities are often used in asset pricing,
portfolio allocation, risk-management and most other areas of finance where long-
horizon measures of risk are necessary. Yet, very little is known about how to forecast
volatility several periods ahead, as most of the focus has been on one-period-ahead
forecasts. In this paper, we compare several approaches of producing multi-period
ahead forecasts of volatility – iterated, direct, and mixed-data sampling (MIDAS)
– as alternatives to the often-used “scaling” method. The comparison is conducted
(pseudo) out-of-sample using returns data of the US stock market portfolio and a cross
section of size, book-to-market, and industry portfolios. The results are surprisingly
sharp. For the market and all other portfolios, we obtain the same ordering of the
volatility forecasting methods. The direct approach provides the worse (in MSFE
sense) forecasts; it is dominated even by the naive scaling method. Iterated forecasts
are suitable for shorter horizons (5 to 10 days ahead), but their MSFEs deteriorate
rapidly as the horizon increases. The MIDAS forecasts perform well at long horizons:
they dominate all other approaches at horizons of 10-days ahead and longer. At 30-
days ahead horizons, the MIDAS MSFE is about 20 percent lower than that of the
next best volatility forecast. West (1996) and Giacomini and White (2006) tests show
that the difference in predictive ability is statistically significant at conventional levels.
In sum, this study dispels the notion that volatility is not forecastable at long horizons
and offers an approach that delivers accurate out-of-sample predictions.
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1 Introduction

Financial decisions are often predicated on accurate multi-period-ahead forecasts of volatility.

For instance, portfolio allocation, risk management, and regulator supervision often

necessitate weekly, monthly, or quarterly volatility forecasts computed from return data

available at, say, daily frequency. It is thus surprising that the extensive volatility literature

has focused almost exclusively on the accuracy of one-period-ahead forecasts (Engle (1982),

Bollerslev (1986), Andersen and Bollerslev (1998a), Hansen and Lunde (2005)) whereas

long-horizon volatility forecasts have received much less attention. The dominant long-

horizon volatility forecasting approach is still to scale the one-period-ahead forecasts by
√

k

where k is the horizon of interest. Its popularity among practitioners stems mostly from

its use in Riskmetrics.1 While there are several alternative approaches to compute multi-

period volatility forecasts, the common belief is that, in general, volatility is difficult to

forecast at horizons longer than ten days or so (Christoffersen and Diebold (2000), West and

Cho (1995)). This paper undertakes a comprehensive empirical examination of multi-period

volatility forecasting approaches, beyond the simple
√

k-scaling rule. The perspective that

we offer is markedly more optimistic: long-horizon volatility is much more forecastable than

previously suggested at horizons as long as 60 trading days (about three months).

Long horizon volatility forecasts can be constructed in three fundamentally different ways.

The first approach is to estimate a horizon-specific model of the volatility, such as a weekly,

monthly, or quarterly GARCH, which can then be used to form direct predictions of

volatility over the next week, month, or quarter. The second approach is to estimate a

daily autoregressive volatility forecasting model and then iterate over the daily forecasts

for the necessary number of periods to obtain weekly, monthly, or quarterly predictions

of the volatility. The forecasting literature refers to the first approach as “direct” and

the second as “iterated” (Marcellino, Stock, and Watson (2006)). A third method is the

mixed-data sampling (MIDAS) approach introduced by Ghysels, Santa-Clara, and Valkanov

((2005), (2006)). A MIDAS model uses daily squared returns to produce directly multi-

period volatility forecasts and can be viewed as a middle ground between the direct and the

iterated approaches. These three methods have been extensively used in the empirical finance

literature, yet little is known about their relative performance in the context of multi-period

volatility forecasts.

1See J.P.Morgan/Reuters (1996) Technical Report (pp. 84).

1



A systematic comparison of direct, iterated, and MIDAS multi-period volatility forecasts has,

to our knowledge, not been carried out. A few notable exceptions are Diebold, Hickman,

Inoue, and Schuermann (1997), Christoffersen and Diebold (2000), and Andersen, Bollerslev,

and Lange (1999) but these studies are more limited in scope. Moreover, they do not consider

MIDAS methods which, to preview the results, are particularly suitable for long-horizon

volatility forecasting. Marcellino, Stock, and Watson (2006) compare direct and iterated

forecasts, but their study focuses on the level of US macroeconomic data series, whereas our

paper is about forecasts of volatility of asset returns. Also, Marcellino, Stock, and Watson

(2006) do not investigate MIDAS models.

Perhaps a reason for the lack of papers on the subject is the theoretical difficulty of comparing

multi-period forecasts, which can be summarized as follows. At a theoretical level, the trade-

off between bias and estimation volatility that exists in multi-period forecasts has not been

fully understood (Findley (1983), Findley (1985), Lin and Granger (1994), Clements and

Hendry (1996), Bhanzali (1999), and Chevillon and Hendry (2005)). While the above cited

papers do not consider volatility predictions per se, the general conclusion is that direct

forecasts ought to dominate iterated forecasts, because of model uncertainty. In the realistic

case of misspecification in the one-period model (model uncertainty), the direct method is

more robust to biases arising from misspecification. The iterated model would dominate

only if the one-period model is known with certainty (no bias) and we are only concerned

with estimation uncertainty (efficiency).

Moreover, to assess the accuracy of the volatility forecasts, we need a loss function that

penalizes deviations from the ex-post realization of the volatility. It is well known that

the loss function plays an important role in forecast comparisons (Elliott and Timmermann

(2008) and references therein). In our case, there is an additional complicating factor in

assessing the forecast accuracy: the true volatility is not observable, even ex-post. We follow

French, Schwert, and Stambaugh (1987a) and Andersen and Bollerslev (1998b) and compute

realized volatility as a proxy for the true volatility, which is then used in the loss function.

Because of the necessity to use a proxy, we need to make sure that our loss function is

consistent, i.e. that it delivers the same forecast ranking with the proxy as it would with the

true volatility. Patton (2007) shows that a loss function that has such a consistency property

is the mean square forecasting error (MSFE) whereas loss functions such as mean absolute

forecasting error would not be appropriate. Therefore, relying on Patton’s (2007) results, we

use the MSFE as the loss function in this study.
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To correctly rank multi-period volatility forecasts, we need a test for predictive accuracy.

Diebold and Mariano (1995) proposed one such test which was simple and, although failing

to account for parameter estimation error, it gave impetus for further research on the topic.

Estimation error is of particular concern in the volatility forecasting literature as there is no

lack of competing predictive models. The approaches by Ghysels and Hall (1990), Hoffman

and Pagan (1989) and West (1996) address explicity parameter uncertainty. Therefore, we

use West (1996) as one of the two tests in our forecast comparisons.

The second test we use was proposed by Giacomini and White (2006) and can be viewed

as a generalization, or a conditional version of West’s (1996) test. Rather than comparing

the difference in average performance, Giacomini and White (2006) consider the conditional

expectation of the difference across forecasting models. This conditioning approach allows

not only for parameter uncertainty (as in West (1996)) but also uncertainty in a number of

implicit choices made by the researcher when formulating a forecast, such as what data to

use, the windows of in-sample estimation period, the length of the out-of-sample forecast,

among others. Since our volatility forecast comparisons would involve models that use data at

different frequencies, different methods of constructing multi-period forecasts, and different

forecasting horizons, the Giacomini and White (2006) test would be particularly appropriate.

Hence, by using this procedure we can determine not only the best forecasting model, but

rather the best forecasting method, given the sample series and the forecasting horizon we

consider. This appears to be the most appropriate test for our purpose.

By addressing the above problems, we make the following contribution with respect

to the previous volatility forecasting literature. First, we investigate whether multi-

horizon forecasts of the volatility of US stock market returns are more accurate than

the naive but widely-used scaling approach. While it might seem obvious that the well-

documented predictability of volatility using one-period-ahead forecasts implies multi-period

predictability, this is not necessarily the case.2 In fact, Diebold, Hickman, Inoue, and

Schuermann (1997) and Christoffersen and Diebold (2000) provide evidence that the opposite

might be true in forecasting return volatility. We consider volatility forecasts of the US

market portfolio returns as well as of five size, five book-to-market, and ten industry portfolio

returns.

Second, we carry out an empirical comparison of the various multi-period forecasting

2Model uncertainty, parameter uncertainty and model instability are some of the reasons that might drive
a wedge between one-period and multi-period forecasts.
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approaches – direct, iterated, and MIDAS – using the same twenty one stock portfolio

returns (market plus twenty size, book-to-market, and industry). Because of the lack of

theoretical guidance on this topic, such a comparison would not only provide some stylized

facts about the long-horizon forecastability of return volatility, but it would also allow us to

gauge if one method produces clearly superior multi-horizon forecasts relative to the others.

The results from such a data-driven comparison are ultimately conditional on the sample

at hand and the design of the pseudo out-of-sample experiment. However, in our case, the

findings (discussed below) are remarkably sharp. At the very least, they speak to the method

that should be used in multi-period volatility forecasts. More generally, our results might

provide guidance for future theoretical work on long-horizon volatility forecasting.

As a third contribution, building on recent work by Ghysels, Santa-Clara, and Valkanov

(2006), we analyze more closely the performance of the MIDAS volatility forecasts. The

MIDAS approach offers a natural middle-ground between the direct and iterated approaches.

Indeed in a MIDAS, daily forecasting variables (for instance, squared returns) are used to

produce a direct prediction of the long-horizon (proxy of) volatility. Similarly to an iterated

approach, the MIDAS forecasts use information contained in the entire history of daily

returns, which implies that they will be efficient. At the same time, the forecasted variable

is the long-horizon volatility, which allows us to side-step the need of aggregating the forecasts

and introducing bias. We analyze several parameterizations of MIDAS forecasting models.

Our study yields surprisingly sharp results. First, as expected, the scaling-up method

performs poorly relative to the other methods across portfolios and horizons. This result is

consistent with the findings of Diebold, Hickman, Inoue, and Schuermann (1997) and several

others who have documented the poor performance of this approach. What is surprising,

however, is that the direct method does not fair much better. At horizon longer than 10

days ahead, the scaling performs significantly better than the direct approach. At short and

medium horizons (up to 10-days ahead), they are similar. Hence, if the direct method were

the only alternative to the scaling approach, and since scaling is a poor forecaster of future

volatility, one might come to the erroneous conclusion that the volatility is hard to forecast

at long horizons.

While there is relatively more work on multi-horizon forecasting in linear models, it is clear

that our paper reveals the important differences between conditional mean and conditional

variance forecasts. Take for example the comparison between the
√

k-scaling rule and the

direct method. As noted before the fact that the latter performs poorly at longer horizon in
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comparison to the former is surprising in light of the conditional mean forecasting results of

Marcellino, Stock, and Watson (2006). While the issue of one-step ahead model specification

error is important for both conditional mean and variance forecasts, the case of volatility

has two additional complications: (i) specification errors of short horizon models are less

important, and (ii) the sampling frequency of returns in the information set plays a dominant

role as well. Regarding (i), we know from Foster and Nelson (1994) that correct volatility

forecasts can be made with the ’wrong’ model. Regarding (ii), it is important to note that the√
k-scaling rule relies on daily returns, whereas the direct method relies on long horizon past

returns. Since the work of Merton (1980) we know that sampling frequency is a dominant

factor in volatility measurement and forecasting.

Our second result dispels that notion. We find that for the volatility of the market portfolio,

iterated and MIDAS forecasts perform significantly better than the scaling and the direct

approaches. At relatively short horizons of 5- to 10-days ahead, the iterated forecasts are

quite accurate. However, at horizons of 10 days ahead and higher, MIDAS forecasts have

a significantly lower MSFE relative to the other forecasts. At horizons of 30- and 60-days

ahead, the MSFE of MIDAS is more than 20 percent lower than that of the next best forecast.

These differences are statistically significant at the one percent level according to the West

(1996) and Giacomini and White (2006) tests. Hence, we find that suitable MIDAS models

produce multi-period volatility forecasts that are significantly better than other widely used

methods.

Third, the superior performance of MIDAS in multi-period forecasts is also observed in

predicting the volatility of the size, book-to-market, and industry portfolios. Similarly to

the market volatility results, the relative precision of the MIDAS forecasts improves with the

horizon. At horizons of 10-periods and higher, the MIDAS forecasts of eight out of the ten size

and book-to-market portfolios dominate the iterated and direct approaches. At horizons of

30-periods and higher, the MIDAS has the smallest MSFEs amongst all forecasting methods

for all ten portfolios. We observe that the volatility of the size and book-to-market portfolios

is significantly less predictable than that of the entire market. Also, the predictability of the

volatility increases with the size of the portfolio. The volatility of the largest-cap stocks is

the most predictable, albeit still less forecastable than the market’s. We do not observe such

a discernable pattern for the book-to-market portfolios.

The paper is organized as follows. In section 2, we introduce the direct, iterated, and MIDAS

multi-period forecasts. The third section discusses the loss function and the West (1996) and
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Giacomini and White (2006) test used to evaluate the forecasts at various horizons. Section

4 presents the empirical results. In section five, we conclude by offering directions for further

research.

2 Multi-Period Volatility Forecasts

We use the following notation. Daily returns are indexed by d where d = 1, 2, . . . , D and

long-horizon returns, at horizon of k days, are indexed by t = 1, 2, . . . , Tk, where Tk = [D/k]

and [·] is the integer operator. For instance, in our data set, we have D = 11202 observations

from 1963 to 2007 from which we can compute T5 = 2184 5-day (or weekly) non-overlapping

returns, T10 = 1092 10-day (or bi-weekly) non-overlapping returns, and so on. To keep the

notation simple, we will henceforth drop the subscript from T but will keep in mind that

the number of non-overlapping returns changes with the horizon of interest, k.

The daily return is defined as rd = log (Pd+1/Pd) and the k−period, continuously

compounded return is defined as Rk
t = log (Pd+k/Pd) . Note that we use lower cases for

daily returns and capitals for multi-period returns, indexed by the horizon k. All long-

horizon returns are demeaned and are computed without overlap, to avoid mechanical serial

correlation. The information set of daily returns at time t is It = {rt, rt−1, rt−2, . . . , r0}.
Analogously, Ik

t =
{
Rk

t , R
k
t−1k

, Rk
t−2k

, . . . , Rk
0

}
is the information set of the k-period, non-

overlapping, continuously compounded returns. We denote by IT and Ik
T the information

sets based on the history of the entire one-period and k-period returns, respectively. Note

that the two information sets are different: Ik
T contains T non-overlapping k-period returns

whereas IT contains D = Tk daily returns, and Ik
T ⊂ IT .

The various volatility forecasts will be denoted by Vc(a, b, i), where: (i) c is the forecasting

method, either direct (d), iterated (i), or MIDAS (m); (ii) a is the starting period of the

forecast; (iii) b is the forecast horizon; (iv) i is the information set used. Often we will drop

i, or even (a, b, i) in situations where it will be unambiguous. For example, VI(t, 1k, ) versus

VM(t, 1k) are conditional forecasts, both using daily historical data It, to produce k−step

ahead forecasts at time t with iterated and MIDAS methods. Finally, we will denote VP (t, 1k)

as the true - or population - conditional volatility given past daily data.
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2.1 Direct Volatility Forecasts

The first method, perhaps the simplest to implement, is to use the multi-period returns

Rk
t , and forecast the multiple horizon conditional volatility directly as one step ahead. For

instance, we can model VD(T, 1k) as a GARCH(p,q) that we estimate with k-period returns

in Ik
T and then forecast the next k-period volatility. We call this a direct approach of

forecasting and denote it by VD(T, 1k, I
k
T ), or more concisely VD(T, 1k). One might expect

this approach to yield accurate estimates on several grounds. First, the parsimony of the

GARCH model makes it hard to beat in pseudo out-of-sample forecasts (Hansen and Lunde

(2005)). Second, the direct approach would produce robust estimates in the sense that it

does not display a bias. However, given that we use the multi-period returns Rk
t to formulate

volatility forecasts, this estimator would not be as efficient as one using the information in

set IT .

In our comparison, we use a GARCH(1,1) model, or to more precise an AR(1)-GARCH(1,1)

model to forecast volatility, both in the direct and the iterated approach. We also have

results from more general GARCH(p,q) models, where p and q are chosen by the Akaike

Information Criterion (AIC) and Bayes Information Criterion (BIC). However, the AIC-

and BIC-chosen models fail to beat the GARCH(1,1) out-of-sample. This finding confirms

that the Hansen and Lunde (2005) results hold at horizons longer than one-period ahead.

Henceforth, we use the GARCH(1,1) exclusively in our analysis.

2.2 Iterated Volatility Forecasts

The second method is to use the daily returns rt in IT in estimating forecasts VI(T, 1k). Hence,

we form iterated forecasts of the daily volatility k period forward and, under the assumption

that the conditional covariances are zero, we write that VI(T, 1k, IT ) =
∑k

j=1 VD(T +j, 1, IT ).

Note that this forecast uses information at time T and the forecasts for days T + 1, T + 2,

..., T + k would have to be iterated from the one-period daily forecasting model.

This iterated approach, seems viable because returns are serially uncorrelated (or close),

but their volatilities are time-varying and persistent. Hence, it is an improvement over the

simple scaling approach. This method has the advantage that we are using daily data to

estimate the forecasting model and will hence be more efficient than the direct approach.

However, since we are iterating the forecasts and summing them, then small errors due to
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model misspecification will be amplified. Hence, in general this method is thought, at least

theoretically to be bias-prone. But it will be efficient, because the data used is high-frequency.

This is particularly important in volatility models.

2.3 MIDAS Volatility Forecasts

The third approach is to use the daily returns rt and directly produce a multi-step ahead

forecast using a mixed-data sampling (or MIDAS) approach. Since this approach is relatively

new, we describe it more in detail. We start by formulating a MIDAS forecasting regression:

Ṽ k
t+1 = µk + φk

jmax∑

j=0

bk(j, θ)r
2
t−j + εk,t (2.1)

where Ṽ k
t+1 is a measure of (future) volatility such as realized volatility, e.g. Ṽ k

t+1 = RV k
t+1

≡
∑k

j=1 r2
t+j and bk(j, θ) is a parsimonious weighting function parameterized by a low-

dimensional parameter vector θ. The intercept µk, slope φk, and weighting scheme parameters

θ are estimated with QMLE. The regression involves data sampled at different frequencies,

since in this study, the realized volatility in equation (2.1) is measured at horizons ranging

from one day (k = 1) to three months (k = 60), whereas the regressors are available at

daily frequencies. For instance, equation (2.1) relates the realized volatility over the month

of, say, December (measured from the close of the market during the last trading day of

November to the close of the market during the last trading day of December) with daily

squared returns up to the last day of November. The weights placed on the predictive lagged

squared returns are estimated in-sample and used to form an pseudo out-of-sample forecast.

As noted before, the lag coefficients bk(j, θ) are parameterized to be a low-dimensional

function of underlying parameters θ. Without this parametric restriction, the number of

parameters associated with the forecasters r2
t−j would proliferate significantly, leading to in-

sample overfit and poor out-of-sample forecasts. A suitable parameterization of bk(j, θ)

circumvents the problem of parameter proliferation and is one of the most important

ingredients in a MIDAS regression. We consider several parameterizations of bk(j, θ), some

of which have already been suggested in previous work. Specifically we consider the following

five specifications: We postulate a flexible form for the weight given to the squared return

on day t − d:
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1. Exponential:

bk(j, θ1, θ2) =
exp{θ1j + θ2j

2}∑∞
i=0 exp{θ1i + θ2i2}

. (2.2)

This scheme guarantees that the weights are positive (which in turn ensures that the

forecasted volatility is also positive) and that they add up to one. Also, the functional

form in equation (2.2) can produce a wide variety of shapes for different values of

the two parameters, and it is parsimonious, with only two parameters to estimate.

Finally, as long as the coefficient κ2 is negative, the weights go to zero as the lag length

increases. The speed with which the weights decay controls the effective number of

observations used to estimate the conditional volatility.

2. Beta:

bk(j, θ1, θ2) =
f( j

jmax , θ1; θ2)
∑jmax

i=1 f( i
jmax , θ1; θ2)

(2.3)

where: f(z, a, b) = za−1(1− z)b−1/β(a, b) and β(a, b) is based on the Gamma function,

or β(a, b) = Γ(a)Γ(b)/Γ(a + b). Specification (2.3) was introduced in Ghysels, Santa-

Clara, and Valkanov (2002) and further explored in Ghysels, Sinko, and Valkanov

(2006). One appealing feature is positivity of the coefficients, which is necessary for a.s.

positive definiteness of the forecasted volatility. For θ1 = 1 and θ2 > 1 one has a slowly

decaying pattern typical of volatility filters, which means that only one parameter

is left to determine the shape, whereas in the case of θ1 = θ2 = 1 we obtain equal

weights, which corresponds to a rolling estimator of the volatility (French, Schwert,

and Stambaugh (1987a), (2005)). The flexibility of the Beta function is well known

and it is often used in Bayesian econometrics to impose flexible, yet parsimonious prior

distributions. The function can take many shapes, including flat weights, gradually

declining weights as well as hump-shaped patterns.

3. Linear:

bk(j) = 1/jmax (2.4)

where jmax is the truncation point specified above. This simple decay functional form

has the advantage that there are no parameters to estimate in the lagged weight

function and might offer good out-of-sample forecasts.
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4. Hyperbolic:

bk(j, θ) =
g( j

jmax , θ)
∑jmax

i=1 g( i
jmax , θ)

(2.5)

where g(j, θ) = Γ(j+θ)/ (Γ(j + 1)Γ(θ)) which can be written equivalently as g(0, θ) = 1

and g(j, θ) = (j + θ − 1) g(j−1, θ)/j, for j ≥ 1. The above Gamma functional form has

only one parameter to estimate. While it is not as flexible as the Beta specification,

it has been extensively used in the volatility modeling literature particularly in the

context of ARFIMA long memory specifications (see e.g. Campbell, Lo, and MacKinlay

(1997) and Andersen and Bollerslev (1998a)). The weights in (2.5) decay hyperbolically

rather than exponentially (Hosking (1981)). The weights are the normalized (or

proportional to the) impulse response of a truncated ARFIMA model. They are the

impulse response of a ARFIMA model (see, Hosking (1981) and Tanaka (1999) and

references therein).

5. Geometric:

bk(j, θ) =
θj

∑∞
i=0 θi

. (2.6)

where |θ| ≤ 1, and bk(j, θ) are normalized so that they sum up to one as in the previous

specifications. This specification is almost identical to a GARCH(1,1) model.

We also estimate two restricted versions, denoted by “Exp. Rest.” and “Beta Rest.,” with

θ2 = 0 (Exp. Rest.) and θ1 = 1 (Beta Rest.). These restrictions are to ensure a slowly

decaying pattern of the weighting functions. Moreover, the linear scheme is the simplest

MIDAS-type model that sets all weights equal to each other. It therefore reduces to the

rolling-window estimator in the spirit of French, Schwert, and Stambaugh (1987a). The

interest on this ”naive” specification is that we can address whether more sophisticated

specifications are able to yield better out-of-sample estimates. In other words, we can

address whether the forecasting power of the MIDAS approach comes from simply using

a rolling window (i.e., a conditional estimator), or also from using a weighting function that

acknowledges that remote observations may be less important to forecast future volatility.

Obviously, in this comparison, the forecasting horizon is expected to play an important

role. Our statistical analysis will reveal that, at short-horizons, any of the MIDAS filter

outperforms easily the linear specification.

The MIDAS forecasts are denoted by VM(T, 1k, IT ), or VM(T, 1k). Whenever necessary, we
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will specify the weights used in the forecasts, which implicitly capture the dynamics of the

conditional volatility. Larger weights on distant past returns induce more persistence on

the volatility process. The weighting function also determines the statistical precision of the

estimator by controlling the amount of data used to estimate the conditional volatility. There

is a tension between capturing the dynamics of volatility and minimizing measurement error.

Because volatilities change through time, we would like to use more recent observations to

forecast the level of volatility in the next month. However, to the extent that measuring

volatility precisely requires a large number of daily observations, the estimator could still

place significant weight on more distant observations.

Some of the above weight specifications have been used in the previous literature, while

others are new to the MIDAS framework but not to the volatility forecasting literature. The

exponential lag structure has been suggested by Ghysels, Santa-Clara, and Valkanov (2005)

to study the risk return tradeoff, while the beta lag has been used in Ghysels, Santa-Clara,

and Valkanov (2006) in comparing short-horizon forecasts using different predictors. The

linear lag is a simple natural benchmark, with no parameters to estimate. Hence, it may

prove robust out-of-sample. The hyperbolic weights are similar to the impulse responses

of ARFIMA models which have been successfully used in the volatility literature (see e.g.

Andersen, Bollerslev, and Diebold (2003)). The geometric weights provide a MIDAS model

that is the closest and easiest to compare to a GARCH(1,1) model. The weights can also

be specified as a step function with a predetermined number and relative magnitude of the

steps. The step function specification presents the most data-mining problems, but is also the

simplest to implement. Corsi (2004) and Forsberg and Ghysels (2006) use this specification

to model the volatility of stock returns.

We can think of the mixed-data regression (2.1) as combining the attractive features of the

iterated and direct forecasts. Notice that we can vary the forecast horizon by changing

k, whereas the predictive variables remain the same and allow us to explore the richer

information set IT . This is not true for the direct approach, where the predictive variables

change with the horizon and estimation and forecasts are formed using information set

Ik
T ⊂ IT . In the MIDAS forecasts, it is not the regressors that change but the estimated

shape of the lag function bk, thus changing the weights placed on the lagged daily squared

returns. Moreover, we form direct forecasts of future volatility at the horizon of interest

without having to iterate over forecasts. This is in contrast with the iterated GARCH

forecasts. Therefore, we use (2.1) to side-step the iteration and aggregation issues associated
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with iterated forecasts as well as the inefficient use of lagged returns that is characteristic of

the direct approach.

While the MIDAS approach to formulate forecasts is quite general, we focused on regression

(2.1) for several reasons. First, we could have extended the number of regression to include

not only daily squared returns but other volatility forecasts such as daily absolute returns,

daily range measures (high-low), and others, as done in Forsberg and Ghysels (2006)

and Ghysels, Santa-Clara, and Valkanov (2006). We use daily squared returns only in

order to make this forecast as directly comparable with the GARCH forecasts as possible.

Moreover, the comparison of the squared daily return predictors to other predictors at shorter

horizons have already been investigated extensively in Forsberg and Ghysels (2006) and

Ghysels, Santa-Clara, and Valkanov (2006). MIDAS regressions typically do not exploit an

autoregressive scheme, so that r2
t−j is not necessarily related to lags of the left hand side

variable. Instead, MIDAS regressions are first and foremost regressions and therefore the

selection of r2
t−j amounts to choosing the best predictor of future volatility from the set

of several possible measures of past fluctuations in returns. In other words, MIDAS is a

reduced-form forecasting device rather than a model of conditional volatility.

2.4 Other Forecasting Approaches: Scaling and Integrated

There are many other approaches, some of which we have tried. In this section, we discuss

these approaches. The first one is the scaling approach. It involves estimating a daily

volatility forecasting model up to time t, using it to form a forecast of the volatility at

day t + 1 and scaling this forecast by
√

k, where k is the length of the horizon of interest.

This forecasting method assumes that log returns are i.i.d. It has been documented of not

being appropriate in forecasting long-horizon volatility by Christoffersen and Diebold (2000),

Diebold, Hickman, Inoue, and Schuermann (1997), among others. However, its prominence

in applied work is undisputed, largely due to J.P.Morgan/Reuters’s (1996) widely adopted

Riskmetrics approach and the suggestions in the Basel II agreement.

An alternative approach is to compute volatility forecasts using an AR(p) model based on

passed realized volatility estimates. Such an AR(p) approach has been used by French,

Schwert, and Stambaugh (1987b), Schwert (1989) with daily returns and more recently by

Andersen and Bollerslev (1998a), Andersen, Bollerslev, Diebold, and Labys (2001), and

others with higher frequency data. Based on these papers, we have also considered the
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following specifications. First, we have estimated a general AR(p) model of realized volatility,

where the lag selection is done in sample using the AIC and BIC. From an out-of-sample

MSE criterion perspective, the selected AR(p) model fails to significantly outperform the

AR(1) model for most assets. Second, Andersen, Bollerslev, Diebold, and Labys (2001) and

Andersen, Bollerslev, and Diebold (2003) provide compeling evidence that realized volatility

has long memory. However, those papers are conducted with high frequency, 5-minute

returns to forecast daily volatility. Since we have only daily returns, we fail to find long

memory and ARFIMA(p,d,0) dynamics are rejected in favor of a simple AR(p) model in-

sample. Also, out-of-sample forecasts of the best ARFIMA(p,d,0) model are dominated by

those of the AR(1). These results are remeniscent of those in Hansen and Lunde (2005).

After a rather extensive preliminary search, we use the AR(1) model. We compute realized

volatility at horizon k to directly forecast the realized volatility over the horizon of interest.

From that perspective, this is a direct approach. It can also be viewed as a restricted version

of a MIDAS model, where the weights on lagged returns are not estimated but are rather

equally weighted.

Another natural alternative is to use the unconditional volatility, either computed from daily

or k-period returns, to forecast as a forecast of future volatility.

3 Comparing the Forecasts

Once we have the forecasts VD(T, 1k), VI(T, 1k) and VM(T, 1k), we need to decide which one

is the closest to the true volatility. To answer this question, we need to tackle three related

issues. First, since the true k-period volatility is unobservable, we will need to proxy for it.

Second, in evaluating the forecasts, we have to agree on an appropriate loss function. Given

the first issue, we require a loss function that produces robust rankings of the forecasts even

in the absence of true volatility. Finally, to gauge the statistical significance of the predictive

gains or losses, we need a test that takes into account the uncertainty involved in producing

the forecasts. We address these issues below.
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3.1 Proxy for Unobservable Long-Horizon Volatility

The pseudo out-of-sample forecast error is

ek
F,T+1 ≡ VP (T, 1k) − VF (T, 1k)

where VF (T, 1k) is the forecasted volatility (either VD(T, 1k), VI(T, 1k), or VM(T, 1k),) and

VP (T, 1k) is the true population volatility. The forecasting error ek
F,T+1 is indexed by the

forecasting method (subscript) and by the horizon (superscript). However, we cannot obtain

ek
F,T+1 because the true volatility is unobservable. Hence, we use the realized volatility

RV k
T+1 as a proxy for VP . Andersen and Bollerslev (1998a) and subsequent work show that

the realized volatility is a good proxy for the true volatility, or at least much better than

squared returns. The realized volatility is computed using high-frequency returns. The

consensus in that literature is that we need data that is very frequent. Unfortunately, we

do not have access to high-frequency data for our sample period, nor for the size, book-to-

market, and industry portfolios in the cross-section. Hence, we use the highest frequency

data that is available to us – daily returns – to compute the realized volatility at horizon k.

Given that we don’t have high frequency data, the estimated RV k
T+1 will be a noisy proxy

of the true underlying volatility. We have to keep that in mind when ranking the forecasts

which makes choosing the appropriate loss function that much more important. We turn to

that issue next.

3.2 Ranking the Forecasts: Appropriate Loss Function

Using RV k
T+1, we compute the feasible out-of-sample forecast error

uk
F,T+1 = RV k

T+1 − VF (T, 1k, i)

and the sample MSFE at the k-horizon:

MSFEk
F =

1

T2 − T1 + 1

T2∑

t=T1

(uk
F,t)

2.

The sample MSFE is computed for each forecasting horizon k and for each forecasting

method F. For a horizon k, the empirical efficiency of the forecasts is assessed by comparing
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the respective MSFEs. The ranking that we thus obtain will be consistent in the sense of

Patton (2007). He showed that when we used the MSFE function, a forecast that dominates

using the feasible errors uk
T+1 will also dominate using the infeasible ek

t+1. In other words, the

error introduced from using a proxy rather than the true volatility will not change the ranking

of our forecasting methods. This robustness property is not shared by some other popular

forecasting evaluation methods, such as the mean absolute forecasting error (MAFE). Hence,

we focus on the MSFE as a loss function to evaluate the forecasts.

To summarize, since all forecasts are compared against the same volatility proxy and the

MSFE is a consistent loss function, our conclusions should not be affected by the noisy

measurement of volatility.

3.3 Tests for Predictive Ability

A test for predictive ability of two competing forecasting methods, F1 and F2, can be

formulated as the following null hypothesis:

H0 : E[(uk
F1,t)

2 − (uk
F2,t)

2] = 0 (3.7)

While this setup was first proposed by Diebold and Mariano (1995), their testing procedure

was valid under the assumption that the parameters of the model are known. West (1996)

derived an asymptotic test of the above null under parameter uncertainty. Since parameter

uncertainty is of great concern in volatility forecasting, we use the West (1996) as one of the

two tests in our forecast comparisons.

An alternative hypothesis of predictability was proposed by Giacomini and White (2006),

who argue that a more practically relevant hypothesis is:

H0 : E[
(
(uk

F1,t)
2 − (uk

F2,t)
2
)
|It−1] = 0 (3.8)

where It−1 is the information set available at time t − 1. The rational for this test of

conditional predictive ability is that the unconditional test of West (1996), while accounting

for parameter uncertainty, fails to capture more general forms of model uncertainty. To see

that, notice that the unconditional test for (3.7) will tend to choose a forecast based on

a correctly specified model. However, as argued by Giacomini and White (2006), “even a
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model that well approximates the data-generating process may forecast poorly, for example

in the case that its parameters are imprecisely estimated.” In our multi-horizon volatility

forecasting setup, the focus is squarely on volatility forecasting. Since our goal is to choose

the most accurate forecasting method, the uncertainty is not only in the parameters but

also in the model that we need to choose. For instance, we will be comparing iterated

versus direct, versus MIDAS approaches. Also, we will be comparing the forecasts at various

horizons. Hence, the conditional test of predictive ability of Giacomini and White (2006) is

quite appropriate in our application and we will use it in conjunction with the West (1996)

test.

In the empirical section, we will use both the West (1996) and Giacomini and White (2006)

tests, because the difference in these tests hinges on our view of the source of uncertainty.

We can see that by noticing that these are tests of two different null hypotheses. We cannot

ultimately say which test would be more appropriate in our application (i.e., accurate size

and higher power). Moreover, we don’t want our results to be predicated on the choice of

the test. Hence, the statistical significance will be computed under both (3.7) and (3.8).

4 Data and Results

We present in this section the empirical results, starting with a data description.

4.1 Data

We have daily CRSP log returns for the period July 1, 1963 to December 31, 2007. Using

these returns, we compute k-period continuously compounded, non-overlapping returns Rk
t ,

for k = 1 (daily), k = 5 (weekly), 10 (bi-weekly), 15, 20 (monthly), 25, 30, 60 (quarterly).

We also have data of five daily size, five daily book-to-market, and ten industry portfolio

returns obtained from Kenneth French’s website. In sum, we will forecast the volatilities of

21 portfolio returns (market plus 20 portfolios) at various horizons . The dataset is standard

in empirical finance and, in the interest of conciseness, we do not provide returns summary

statistics3.

The log daily returns are used to estimate the GARCH and MIDAS forecasting models.

3They are available upon request.
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They are also used to compute the realized volatility RV k
t for each horizon k as a proxy

for the true (unobservable) volatility. The long-horizon returns Rk
t are used in the direct

GARCH forecasts.

4.2 Results

Table 1 provides the summary statistics of the multi-period forecasts for the various models.

All forecasts are out-of-sample as described above. We consider seven MIDAS models, an

iterated GARCH (1,1), a direct GARCH (1,1), and an integrated GARCH. As a reference,

we also provide the statistics of a scaled GARCH(1,1) as well as the realized volatility that is

used as proxy for the true next-period volatility. We have also tried numerous higher order

GARCH(p,q) models for p = 1, ..., 6 and q = 1, ..., 6 as well as the asymmetric GJR-GARCH

of Glosten, Jagannathan, and Runkle (1993), for iterated and direct forecasts. However,

these forecasts were almost always dominated by the GARCH(1,1) model in terms of multi-

period, out-of-sample MSFE. This is a multi-period version of the results of Hansen and

Lunde (2005) who show that a simple GARCH(1,1) has a smaller one-period out-of-sample

MSFE than more richly parameterized GARCH models. Hence, we focus on the direct and

iterated GARCH(1,1) models from this point onward in the interest of brevity.4

The statistics that we display–the annualized mean, annualized volatility, skewness, kurtosis,

first-order autocorrelation, and probability of a forecast being higher than the realized

volatility–can be summarized as follows. First, all forecasts are upward biased, as their

means are higher than the averaged realized volatility. Moreover, the probability of all

models to predict a volatility higher than the next period volatility is about 65 percent

across horizons and most models. The direct GARCH is an exception as its bias is higher

than that of the other approaches and its probability of over-prediction is about 70 percent.

This upward bias is undoubtedly due to outliers such as October 1987 that non of the above

models can accommodate. When we exclude the three highest volatile months from the

sample, the bias is significantly reduced.

Second, the multi-period forecasts are much less volatile than the multi-period realized

volatility. The square-root rule is extremely smooth at all horizons, which is the main reason

for its poor forecasting performance. The GARCH and MIDAS models are much more time-

varying, but their volatility is still about 50 percent lower than that of the realized volatility,

4The results from the other GARCH models are available upon request.
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at all horizons. Third, all multi-period forecasts are significantly more skewed than the

realized volatility. The exception is the square-root rule whose skewness is less than that of

the realized volatility. Finally, while the multi-period realized volatility is quite persistent as

are the GARCH forecasts, some of the MIDAS models, such as the exponential and restricted

exponential MIDAS, exhibit significantly less serial correlation.

In Table 2, we compare the direct, iterated, and MIDAS forecasts to the scaling-up approach.

Scaling the one-period volatility by the horizon k is admittedly a naive approach and is not

directly comparable to the other three methods. The summary statistics in Table 1 also

suggest that it may not be the best forecasting approach. However, despite the evidence

against this method (Diebold, Hickman, Inoue, and Schuermann (1997)), it is still widely

used in practice.5 We use the scaling approach as a benchmark not because we think it is a

particularly hard forecast to beat, but because of its widespread use in the profession. The

MIDAS forecasts are computed using the hyperbolic specification (2.5), which as we will see

below has some desirable properties.

In panel A, we report the level of the MSFE, 5, 10, 15, 20, 25, 30, and 60 days ahead in

addition to the one-period ahead forecast. Not surprisingly, the MSFEs increase but at a

rate slower than
√

k. The one-period ahead forecasts of the iterated, direct forecasts are

the same, by construction. However, they differ as the horizon k increases. At five periods

ahead, the iterated, direct, MIDAS, and integrated forecasts have comparable MSFEs. The

k-rule forecasts are the exception with significantly higher MSFEs. As the horizon increases,

the MSFE of the k-rule is similar to that of the direct forecasts. In fact, at horizons of

20 periods and higher, the k-rule forecasts are better than the direct forecasts, while the

integrated forecasts are slightly better.

This pattern is perhaps best observed in Panel B, which reports the MSFE’s of the forecasts

relative to that of the square-root rule. All other forecasts dominate the scaling rule at

shorter horizons of 5 to 10 days. As horizons longer than 10 days, the relative forecasting

performance of the iterated and integrated methods subside and the direct forecast actually

has higher MSFE by as much as 23 percent at 60 days. The rapid deterioration of the long-

horizon direct forecast is consistent with the findings of Christoffersen and Diebold (2000).

The relatively lower advantage of the iterated forecast is also consistent with the theoretical

papers that have emphasized the bias of the iterated forecasts. As the iterations increase,

5This method has been mentioned in the Basel II agreement, which might explain to a great extent is
use by professionals.
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so does the bias. Hence, our results suggest that the iterated method is clearly suitable for

shorter horizon forecasts in the range of 5-period (one week) to 20-periods (one month).

The MIDAS method produces the best forecasts at long horizons. In Panel B, its relative

MSFE is better than the scaling rule at 5-period ahead forecasts and higher. More

importantly, its forecasting performance does not deteriorate nearly as rapidly as that of

the other methods. At all horizons, it produces the best forecast and its advantage relative

to the other methods increases steadily. At 60 days, its MSFE is about 23 percent lower

than that of the scaling rule. The long-horizon forecastability of the market volatility with

the MIDAS is a new finding.

To judge the statistical significance of the forecasting improvements, we use the West (1996)

and Giacomini and White (2006) tests for predictive ability. As discussed in section 3.3,

the first method is unconditional whereas the second is conditional. Henceforth, we report

asymptotic p-values from both tests in Panels C and D of Table 2, as they test for different

null hypotheses. If the p-value is smaller than 1 percent, we display 0.00. The following

results are worth noting. The direct forecasts are insignificantly better than the scaling rule

at a the 20-day horizon using the West (1996) test. At longer horizons, the scaling rule is

actually significantly better than the direct forecast using both tests. This suggests that the

direct method should not be used for multi-period volatility forecasting.

The other forecasting methods are significantly better than the scaling approach. However,

their superior performance deteriorates rapidly with k. At the longest forecasting horizon

we consider, k = 60 days, the iterated forecasts are not statistically better than the scaling

rule, according to the West (1996) test whose p-value is 0.08. The MIDAS forecasts stand

out in Table 2 as providing the best multi-period ahead predictions. Even at 60 days, their

superior performance is statistically significant at one percent under the West (1996) and

Giacomini and White (2006) tests.

As a final comparison, we test whether the best performing test, at any horizon, is

significantly better than the second best forecast. Significance at the five percent level using

the West (1996) and Giacomini and White (2006) tests is denoted by bold the numbers in the

table. For the one-period forecasts, the direct and iterated GARCH methods dominate all

other approaches. At 10 day horizons and longer, however, the MIDAS forecast is statistically

significantly better than the other forecasting methods which confirms its superior multi-

period forecasting performance.
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It might be argued that the MIDAS approach has an unfair advantage in this out-of-sample

exercise, because we have chosen the hyperbolic specification (2.5) which is known from

previous work to produce good results. While the same comment can be levied against the

other methods, it is interesting to see whether alternative polynomial specifications produce

vastly different forecasts. In Table 3, we compute the MSFE of various MIDAS specifications.

The polynomial weights that we use in the MIDAS are the hyperbolic (2.5), the linear (2.4),

the beta (2.3), the exponential (2.2), and various specifications of step functions (2.6). We

also display the MSFE of the iterated forecast (as a reference) which was shown to produce

the best prediction among the non-MIDAS approaches.

Panel A of Table 3 provides the MSFEs which are directly comparable with Table 3, while

Panel B provides the MSFEs relative to the iterated approach. Focusing our attention on

Panel B, we note that exponential weights are the worst overall. While these weights have

been used successfully by Ghysels, Santa-Clara, and Valkanov (2005) to estimate the risk

return tradeoff, in the context of volatility forecasting, they are dominated by the other

methods. It is not surprising to find that different weights will be appropriate in different

applications. The suitability of the weighting function will be determined by the stochastic

properties of the predicted variable and it is not reasonable to expect one functional form of

bk (j, θ) to dominate across applications.

The hyperbolic specification produces the best multi-period forecasts. This is not surprising,

given that it is very similar to an ARFIMA model (whose impulse response function is

also hyperbolically decaying) and ARFIMAs produce good out-of-sample forecasts of future

volatility (cite). However, it is interesting to note that the beta and most of the step

specifications produce very good results, as well. With the exception of the exponential

MIDAS, all other models dominate the iterated forecasts at long-horizons.

Tables 4, 5, and 6 display results similar to those of Table 2 for the five size, five book-

to-market, and ten industry portfolios, respectively. In the interest of conciseness, we have

omitted the k-rule forecasts, as they are inferior to the alternative models for all portfolios

and all horizons. First, we notice that the portfolio MSFE across forecasting methods are

larger than the corresponding market MSFE in Table 2. In other words, the volatilities of

the portfolio returns are less predictable than the volatility of the market portfolio.

Looking at Panel B of Table 4, the MSFE of the direct forecasts are markedly higher than

those of the MIDAS and iterated forecasts. For the smallest cap stocks, they are about 369
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percent larger at 60-period ahead. For the largest cap stocks, they are about 37 percent larger

and the decrease is monotonic. Hence, the direct approach is particularly inappropriate to

use for volatile, small-cap stocks. Turning to the significance results in Panels C and D, the

MSFEs of the MIDAS are significantly lower than those of the iterated forecasts, especially

at long horizons. Moreover, the large cap stocks are significantly more predictable than

are smaller cap stocks. Tables 5 and 6 contains similar results for the book-to-market and

industry portfolio returns. A slight difference is that volatility of these portfolio returns

seems to be more forecastable that of the size portfolios as the levels of the MSFE in Tables

5 and 6 are lower than those in Table 4.

5 Conclusion

We consider two widely used methods to forecast volatility at long horizons: iterated and

direct forecasts. In addition, we use a relatively new third approach – MIDAS. All three

approaches yield multi-step ahead volatility forecasts without relying on the restrictive

assumption of i.i.d. returns that is implicit in the often-used scaling approach. We compare

these forecasting methods in terms of their average forecasting accuracy–using the MSFE.

Since no general analytic results are possible, the comparison is carried out using daily

stock market returns from 1963 to 2007 for the US stock market as well as five size, five

book-to-market, and ten industry portfolios. All forecasts are (pseudo) out-of-sample.

The MIDAS forecasts are significantly more precise than the direct and iterated forecasts

according to the West (1996) and Giacomini and White (2006) tests of predictive ability.

We also document sizeable differences in the two tests. We conjecture that the gains in

forecasting power in the MIDAS approach are due to the ability of the approach to take

advantage of the bias-efficiency trade-off that exists in multi-period forecasts. While the

other two approaches are either efficient but biased (iterated) or unbiased but inefficient

(direct), the MIDAS strikes a balance between the two.
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Tables 
 
 

Table 1: Sample Statistics of Multi-period Volatility Forecasts – Market Portfolio. 
 
The table reports standard descriptive statistics for the volatility forecasts time-series at 
different horizons from different forecasting methods. The out-of-sample forecasts obtain by re-
estimating the model at each step and using it to formulate a k-period ahead prediction 
(k=1,…,60). The data is from July 1, 1963 to December 31, 2007. The first 4,000 daily 
observations are used to estimate the first forecast. The forecasting models include the MIDAS 
method with the different weighting-functions discussed in the main text, the AR(1)-
GARCH(1,1) iterated method, the AR(1)-GARCH(1,1) direct method, integrated volatility 
method from an autoregression, and the scaling-up (or square-root rule) method. The entry 
Proxy shows the values of the sample statistics for the true volatility process proxied by the 
realized volatility. The sample statistics include the annualized mean value of the volatility 
forecasts, the annualized standard deviation, skewness, kurtosis, first-order correlation and the 
sample frequency of overprediction in relation to the proxy considered. 

 
 

 

 
 
 
 
 
 
 
 



Table 2: Multi-Period MSFEs of Volatility Forecasts – Market Portfolio 
 
The table reports mean square forecasting errors (MSFE) of the market volatility from the 
iterated method,VI, direct method, VD, MIDAS with hyperbolic weights, VM HYPERB, 

integratedVint, and scaling-up k V1 methods. The out-of-sample forecasts obtain by re-estimating 
the model at each step and using it to formulate a k-period ahead prediction (k=1,…,60). The 
data is from July 1, 1963 to December 31, 2007. The first 4,000 daily observations are used to 
estimate the first forecast.  
Panel A reports the level of the MSFE’s (the smallest MSFE given k is in bold letters).  
Panel B reports the values of the Improvement Ratio, which is defined as 
100*[MSFE(Benchmark)-MSFE(Alternative)]/MSFE(Benchmark), where the benchmark model 
is the scaling-up method. Panel C reports the p-values of the West’s tests for equal forecasting 
ability, whereas Panel D reports the p-values of the test for equal conditional forecasting ability 
of Giacomini and White. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
 
 
 
 
 



Table 3: Multi-Period MSFEs of Volatility Forecasts – Market Portfolio. 
 
The table reports mean square forecasting errors (MSFE) of the market return volatility for 
various MIDAS specifications. The specifications include the hyperbolic model, denoted 
VM  HYPERB; the linear model, denoted VM  LINEAR; the unrestricted and restricted versions 
of the beta model, denoted VM  BETA and VM  BETA REST, respectively; the unrestricted and 
restricted versions of the exponential model, denoted VM  EXP and VM  EXP REST, 
respectively, and the geometric model, denoted VM  GEOMET. As a reference, we also report 
the MSFE of the iterated model. The out-of-sample forecasts obtain by re-estimating the model 
at each step and using it to formulate a k-period ahead prediction. The data is from July 1, 
1963 to December 31, 2007. The first 4,000 daily observations are used to estimate the first 
forecast. Panels A,B,C, and D report the same statistical information as in Table 2 above, using 
VM  HYPERB (the model with smallest MSFE) as a benchmark.  

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table 4: Multi-Period MSFEs of Volatility Forecasts – Size Portfolios. 

 
The table reports mean square forecasting errors (MSFE) of the return volatility of five size-
sorted portfolios. The forecasts are obtained using the iterated method,VI, the direct method, 
VD, the MIDAS with hyperbolic weights, VM , and the integrated method, Vint. The out-of-
sample forecasts obtain by re-estimating the model at each step and using it to formulate a k-
period ahead prediction. The data is from July 1, 1963 to December 31, 2007. The first 4,000 
daily observations are used to estimate the first forecast. Panel A1 reports the level of the 
MSFE’s. Panels A,B,C, and D report the same statistical information as in Table 2 above, using 
VM  (the model with smallest MSFE) as benchmark.  

 
 

 

 
 
 
 
 
 
 



 
Table 5: Multi-Period MSFEs of Volatility Forecasts – Book-to-Market Portfolios. 
 
The table reports mean square forecasting errors (MSFE) of the return volatility of five book-to-
market-sorted portfolios. The forecasts are obtained using the iterated method,VI, the direct 
method, VD, the MIDAS with hyperbolic weights, VM , and the integrated method, Vint. The 
out-of-sample forecasts obtain by re-estimating the model at each step and using it to formulate 
a k-period ahead prediction. The data is from July 1, 1963 to December 31, 2007. The first 
4,000 daily observations are used to estimate the first forecast. Panel A1 reports the level of the 
MSFE’s. Panels A,B,C, and D report the same statistical information as in Table 2 above, using 
VM  (the model with smallest MSFE) as benchmark.  

 
 

 
  
 
 
 
 
 
 
 



 
Table 6: Multi-Period MSFEs of Volatility Forecasts – Industries Portfolios. 

 
The table reports mean square forecasting errors (MSFE) of the return volatility of ten 
industries portfolios. The forecasts are obtained using the iterated method,VI, the direct method, 
VD, the MIDAS with hyperbolic weights, VM , and the integrated method, Vint. The out-of-
sample forecasts obtain by re-estimating the model at each step and using it to formulate a k-
period ahead prediction. The data is from July 1, 1963 to December 31, 2007. The first 4,000 
daily observations are used to estimate the first forecast. Panel A,B,C, and D reports the level 
of the MSFE’s. Panels A1, A2, B1 and B2 report the same statistical information as in Table 2 
above, using VM  (the model with smallest MSFE) as benchmark.  

 
 

 
 
 
 
 
 



Table 6: Multi-Period MSFEs of Volatility Forecasts – Industries Portfolios 
(Continuation) 
 
 

  

 
 
 
 
 
 
 
 
 
 




