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Abstract

Multi-period forecasts of stock market return volatilities are often used in asset pricing,
portfolio allocation, risk-management and most other areas of finance where long-
horizon measures of risk are necessary. Yet, very little is known about how to forecast
volatility several periods ahead, as most of the focus has been on one-period-ahead
forecasts. In this paper, we compare several approaches of producing multi-period
ahead forecasts of volatility — iterated, direct, and mixed-data sampling (MIDAS)
— as alternatives to the often-used “scaling” method. The comparison is conducted
(pseudo) out-of-sample using returns data of the US stock market portfolio and a cross
section of size, book-to-market, and industry portfolios. The results are surprisingly
sharp. For the market and all other portfolios, we obtain the same ordering of the
volatility forecasting methods. The direct approach provides the worse (in MSFE
sense) forecasts; it is dominated even by the naive scaling method. Iterated forecasts
are suitable for shorter horizons (5 to 10 days ahead), but their MSFEs deteriorate
rapidly as the horizon increases. The MIDAS forecasts perform well at long horizons:
they dominate all other approaches at horizons of 10-days ahead and longer. At 30-
days ahead horizons, the MIDAS MSFE is about 20 percent lower than that of the
next best volatility forecast. West (1996) and Giacomini and White (2006) tests show
that the difference in predictive ability is statistically significant at conventional levels.
In sum, this study dispels the notion that volatility is not forecastable at long horizons
and offers an approach that delivers accurate out-of-sample predictions.
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1 Introduction

Financial decisions are often predicated on accurate multi-period-ahead forecasts of volatility.
For instance, portfolio allocation, risk management, and regulator supervision often
necessitate weekly, monthly, or quarterly volatility forecasts computed from return data
available at, say, daily frequency. It is thus surprising that the extensive volatility literature
has focused almost exclusively on the accuracy of one-period-ahead forecasts (Engle (1982),
Bollerslev (1986), Andersen and Bollerslev (1998a), Hansen and Lunde (2005)) whereas
long-horizon volatility forecasts have received much less attention. The dominant long-
horizon volatility forecasting approach is still to scale the one-period-ahead forecasts by vk
where £ is the horizon of interest. Its popularity among practitioners stems mostly from
its use in Riskmetrics.! While there are several alternative approaches to compute multi-
period volatility forecasts, the common belief is that, in general, volatility is difficult to
forecast at horizons longer than ten days or so (Christoffersen and Diebold (2000), West and
Cho (1995)). This paper undertakes a comprehensive empirical examination of multi-period
volatility forecasting approaches, beyond the simple vk-scaling rule. The perspective that
we offer is markedly more optimistic: long-horizon volatility is much more forecastable than

previously suggested at horizons as long as 60 trading days (about three months).

Long horizon volatility forecasts can be constructed in three fundamentally different ways.
The first approach is to estimate a horizon-specific model of the volatility, such as a weekly,
monthly, or quarterly GARCH, which can then be used to form direct predictions of
volatility over the next week, month, or quarter. The second approach is to estimate a
daily autoregressive volatility forecasting model and then iterate over the daily forecasts
for the necessary number of periods to obtain weekly, monthly, or quarterly predictions
of the volatility. The forecasting literature refers to the first approach as “direct” and
the second as “iterated” (Marcellino, Stock, and Watson (2006)). A third method is the
mixed-data sampling (MIDAS) approach introduced by Ghysels, Santa-Clara, and Valkanov
((2005), (2006)). A MIDAS model uses daily squared returns to produce directly multi-
period volatility forecasts and can be viewed as a middle ground between the direct and the
iterated approaches. These three methods have been extensively used in the empirical finance
literature, yet little is known about their relative performance in the context of multi-period

volatility forecasts.

1See J.P.Morgan/Reuters (1996) Technical Report (pp. 84).



A systematic comparison of direct, iterated, and MIDAS multi-period volatility forecasts has,
to our knowledge, not been carried out. A few notable exceptions are Diebold, Hickman,
Inoue, and Schuermann (1997), Christoffersen and Diebold (2000), and Andersen, Bollerslev,
and Lange (1999) but these studies are more limited in scope. Moreover, they do not consider
MIDAS methods which, to preview the results, are particularly suitable for long-horizon
volatility forecasting. Marcellino, Stock, and Watson (2006) compare direct and iterated
forecasts, but their study focuses on the level of US macroeconomic data series, whereas our
paper is about forecasts of volatility of asset returns. Also, Marcellino, Stock, and Watson
(2006) do not investigate MIDAS models.

Perhaps a reason for the lack of papers on the subject is the theoretical difficulty of comparing
multi-period forecasts, which can be summarized as follows. At a theoretical level, the trade-
off between bias and estimation volatility that exists in multi-period forecasts has not been
fully understood (Findley (1983), Findley (1985), Lin and Granger (1994), Clements and
Hendry (1996), Bhanzali (1999), and Chevillon and Hendry (2005)). While the above cited
papers do not consider volatility predictions per se, the general conclusion is that direct
forecasts ought to dominate iterated forecasts, because of model uncertainty. In the realistic
case of misspecification in the one-period model (model uncertainty), the direct method is
more robust to biases arising from misspecification. The iterated model would dominate
only if the one-period model is known with certainty (no bias) and we are only concerned

with estimation uncertainty (efficiency).

Moreover, to assess the accuracy of the volatility forecasts, we need a loss function that
penalizes deviations from the ex-post realization of the volatility. It is well known that
the loss function plays an important role in forecast comparisons (Elliott and Timmermann
(2008) and references therein). In our case, there is an additional complicating factor in
assessing the forecast accuracy: the true volatility is not observable, even ex-post. We follow
French, Schwert, and Stambaugh (1987a) and Andersen and Bollerslev (1998b) and compute
realized volatility as a proxy for the true volatility, which is then used in the loss function.
Because of the necessity to use a proxy, we need to make sure that our loss function is
consistent, i.e. that it delivers the same forecast ranking with the proxy as it would with the
true volatility. Patton (2007) shows that a loss function that has such a consistency property
is the mean square forecasting error (MSFE) whereas loss functions such as mean absolute
forecasting error would not be appropriate. Therefore, relying on Patton’s (2007) results, we
use the MSFE as the loss function in this study.



To correctly rank multi-period volatility forecasts, we need a test for predictive accuracy.
Diebold and Mariano (1995) proposed one such test which was simple and, although failing
to account for parameter estimation error, it gave impetus for further research on the topic.
Estimation error is of particular concern in the volatility forecasting literature as there is no
lack of competing predictive models. The approaches by Ghysels and Hall (1990), Hoffman
and Pagan (1989) and West (1996) address explicity parameter uncertainty. Therefore, we

use West (1996) as one of the two tests in our forecast comparisons.

The second test we use was proposed by Giacomini and White (2006) and can be viewed
as a generalization, or a conditional version of West’s (1996) test. Rather than comparing
the difference in average performance, Giacomini and White (2006) consider the conditional
expectation of the difference across forecasting models. This conditioning approach allows
not only for parameter uncertainty (as in West (1996)) but also uncertainty in a number of
implicit choices made by the researcher when formulating a forecast, such as what data to
use, the windows of in-sample estimation period, the length of the out-of-sample forecast,
among others. Since our volatility forecast comparisons would involve models that use data at
different frequencies, different methods of constructing multi-period forecasts, and different
forecasting horizons, the Giacomini and White (2006) test would be particularly appropriate.
Hence, by using this procedure we can determine not only the best forecasting model, but
rather the best forecasting method, given the sample series and the forecasting horizon we

consider. This appears to be the most appropriate test for our purpose.

By addressing the above problems, we make the following contribution with respect
to the previous volatility forecasting literature. First, we investigate whether multi-
horizon forecasts of the volatility of US stock market returns are more accurate than
the naive but widely-used scaling approach. While it might seem obvious that the well-
documented predictability of volatility using one-period-ahead forecasts implies multi-period
predictability, this is not necessarily the case.? In fact, Diebold, Hickman, Inoue, and
Schuermann (1997) and Christoffersen and Diebold (2000) provide evidence that the opposite
might be true in forecasting return volatility. We consider volatility forecasts of the US
market portfolio returns as well as of five size, five book-to-market, and ten industry portfolio

returns.

Second, we carry out an empirical comparison of the various multi-period forecasting

2Model uncertainty, parameter uncertainty and model instability are some of the reasons that might drive
a wedge between one-period and multi-period forecasts.



approaches — direct, iterated, and MIDAS — using the same twenty one stock portfolio
returns (market plus twenty size, book-to-market, and industry). Because of the lack of
theoretical guidance on this topic, such a comparison would not only provide some stylized
facts about the long-horizon forecastability of return volatility, but it would also allow us to
gauge if one method produces clearly superior multi-horizon forecasts relative to the others.
The results from such a data-driven comparison are ultimately conditional on the sample
at hand and the design of the pseudo out-of-sample experiment. However, in our case, the
findings (discussed below) are remarkably sharp. At the very least, they speak to the method
that should be used in multi-period volatility forecasts. More generally, our results might

provide guidance for future theoretical work on long-horizon volatility forecasting.

As a third contribution, building on recent work by Ghysels, Santa-Clara, and Valkanov
(2006), we analyze more closely the performance of the MIDAS volatility forecasts. The
MIDAS approach offers a natural middle-ground between the direct and iterated approaches.
Indeed in a MIDAS, daily forecasting variables (for instance, squared returns) are used to
produce a direct prediction of the long-horizon (proxy of) volatility. Similarly to an iterated
approach, the MIDAS forecasts use information contained in the entire history of daily
returns, which implies that they will be efficient. At the same time, the forecasted variable
is the long-horizon volatility, which allows us to side-step the need of aggregating the forecasts

and introducing bias. We analyze several parameterizations of MIDAS forecasting models.

Our study yields surprisingly sharp results. First, as expected, the scaling-up method
performs poorly relative to the other methods across portfolios and horizons. This result is
consistent with the findings of Diebold, Hickman, Inoue, and Schuermann (1997) and several
others who have documented the poor performance of this approach. What is surprising,
however, is that the direct method does not fair much better. At horizon longer than 10
days ahead, the scaling performs significantly better than the direct approach. At short and
medium horizons (up to 10-days ahead), they are similar. Hence, if the direct method were
the only alternative to the scaling approach, and since scaling is a poor forecaster of future
volatility, one might come to the erroneous conclusion that the volatility is hard to forecast

at long horizons.

While there is relatively more work on multi-horizon forecasting in linear models, it is clear
that our paper reveals the important differences between conditional mean and conditional
variance forecasts. Take for example the comparison between the vk-scaling rule and the

direct method. As noted before the fact that the latter performs poorly at longer horizon in



comparison to the former is surprising in light of the conditional mean forecasting results of
Marcellino, Stock, and Watson (2006). While the issue of one-step ahead model specification
error is important for both conditional mean and variance forecasts, the case of volatility
has two additional complications: (i) specification errors of short horizon models are less
important, and (ii) the sampling frequency of returns in the information set plays a dominant
role as well. Regarding (i), we know from Foster and Nelson (1994) that correct volatility
forecasts can be made with the 'wrong’ model. Regarding (ii), it is important to note that the
V'k-scaling rule relies on daily returns, whereas the direct method relies on long horizon past
returns. Since the work of Merton (1980) we know that sampling frequency is a dominant

factor in volatility measurement and forecasting.

Our second result dispels that notion. We find that for the volatility of the market portfolio,
iterated and MIDAS forecasts perform significantly better than the scaling and the direct
approaches. At relatively short horizons of 5- to 10-days ahead, the iterated forecasts are
quite accurate. However, at horizons of 10 days ahead and higher, MIDAS forecasts have
a significantly lower MSFE relative to the other forecasts. At horizons of 30- and 60-days
ahead, the MSFE of MIDAS is more than 20 percent lower than that of the next best forecast.
These differences are statistically significant at the one percent level according to the West
(1996) and Giacomini and White (2006) tests. Hence, we find that suitable MIDAS models
produce multi-period volatility forecasts that are significantly better than other widely used

methods.

Third, the superior performance of MIDAS in multi-period forecasts is also observed in
predicting the volatility of the size, book-to-market, and industry portfolios. Similarly to
the market volatility results, the relative precision of the MIDAS forecasts improves with the
horizon. At horizons of 10-periods and higher, the MIDAS forecasts of eight out of the ten size
and book-to-market portfolios dominate the iterated and direct approaches. At horizons of
30-periods and higher, the MIDAS has the smallest MSFEs amongst all forecasting methods
for all ten portfolios. We observe that the volatility of the size and book-to-market portfolios
is significantly less predictable than that of the entire market. Also, the predictability of the
volatility increases with the size of the portfolio. The volatility of the largest-cap stocks is
the most predictable, albeit still less forecastable than the market’s. We do not observe such

a discernable pattern for the book-to-market portfolios.

The paper is organized as follows. In section 2, we introduce the direct, iterated, and MIDAS

multi-period forecasts. The third section discusses the loss function and the West (1996) and



Giacomini and White (2006) test used to evaluate the forecasts at various horizons. Section
4 presents the empirical results. In section five, we conclude by offering directions for further

research.

2 Multi-Period Volatility Forecasts

We use the following notation. Daily returns are indexed by d where d = 1,2,..., D and
long-horizon returns, at horizon of k days, are indexed by t = 1,2, ..., T}, where T}, = [D/k]
and [-] is the integer operator. For instance, in our data set, we have D = 11202 observations
from 1963 to 2007 from which we can compute T5 = 2184 5-day (or weekly) non-overlapping
returns, T3 = 1092 10-day (or bi-weekly) non-overlapping returns, and so on. To keep the
notation simple, we will henceforth drop the subscript from 7" but will keep in mind that

the number of non-overlapping returns changes with the horizon of interest, k.

The daily return is defined as ry = log(Pyy1/P;) and the k—period, continuously
compounded return is defined as RF= log(Psx/P;). Note that we use lower cases for
daily returns and capitals for multi-period returns, indexed by the horizon k. All long-
horizon returns are demeaned and are computed without overlap, to avoid mechanical serial
correlation. The information set of daily returns at time ¢ is I, = {ry,r4_1,7¢-2,...,70}-
Analogously, IF = {Rf, Rf_lk,Rf_zk, ..., RE } is the information set of the k-period, non-
overlapping, continuously compounded returns. We denote by Iy and I} the information
sets based on the history of the entire one-period and k-period returns, respectively. Note
that the two information sets are different: IX contains 7' non-overlapping k-period returns

whereas I1 contains D = T'k daily returns, and Iéﬂ C Ir.

The various volatility forecasts will be denoted by V.(a, b, i), where: (i) ¢ is the forecasting
method, either direct (d), iterated (i), or MIDAS (m); (ii) a is the starting period of the
forecast; (iii) b is the forecast horizon; (iv) ¢ is the information set used. Often we will drop
i, or even (a,b,7) in situations where it will be unambiguous. For example, V;(t, 1;, ) versus
Var(t, 1) are conditional forecasts, both using daily historical data I;, to produce k—step
ahead forecasts at time ¢t with iterated and MIDAS methods. Finally, we will denote Vp (¢, 1)

as the true - or population - conditional volatility given past daily data.



2.1 Direct Volatility Forecasts

The first method, perhaps the simplest to implement, is to use the multi-period returns
R, and forecast the multiple horizon conditional volatility directly as one step ahead. For
instance, we can model Vp (T, 1;) as a GARCH(p,q) that we estimate with k-period returns
in I% and then forecast the next k-period volatility. We call this a direct approach of
forecasting and denote it by Vp (T, 1, IX), or more concisely Vp(T, 1;). One might expect
this approach to yield accurate estimates on several grounds. First, the parsimony of the
GARCH model makes it hard to beat in pseudo out-of-sample forecasts (Hansen and Lunde
(2005)). Second, the direct approach would produce robust estimates in the sense that it
does not display a bias. However, given that we use the multi-period returns R¥ to formulate
volatility forecasts, this estimator would not be as efficient as one using the information in

set Ip.

In our comparison, we use a GARCH(1,1) model, or to more precise an AR(1)-GARCH(1,1)
model to forecast volatility, both in the direct and the iterated approach. We also have
results from more general GARCH(p,q) models, where p and ¢ are chosen by the Akaike
Information Criterion (AIC) and Bayes Information Criterion (BIC). However, the AIC-
and BIC-chosen models fail to beat the GARCH(1,1) out-of-sample. This finding confirms
that the Hansen and Lunde (2005) results hold at horizons longer than one-period ahead.
Henceforth, we use the GARCH(1,1) exclusively in our analysis.

2.2 Iterated Volatility Forecasts

The second method is to use the daily returns r; in I in estimating forecasts V; (T, 1;). Hence,
we form iterated forecasts of the daily volatility £ period forward and, under the assumption
that the conditional covariances are zero, we write that V(T 1y, Ir) = Z?Zl Vp(T+j4,1, Ir).
Note that this forecast uses information at time 7" and the forecasts for days T+ 1, T + 2,

..., I'4+ k would have to be iterated from the one-period daily forecasting model.

This iterated approach, seems viable because returns are serially uncorrelated (or close),
but their volatilities are time-varying and persistent. Hence, it is an improvement over the
simple scaling approach. This method has the advantage that we are using daily data to
estimate the forecasting model and will hence be more efficient than the direct approach.

However, since we are iterating the forecasts and summing them, then small errors due to



model misspecification will be amplified. Hence, in general this method is thought, at least
theoretically to be bias-prone. But it will be efficient, because the data used is high-frequency.

This is particularly important in volatility models.

2.3 MIDAS Volatility Forecasts

The third approach is to use the daily returns r; and directly produce a multi-step ahead
forecast using a mixed-data sampling (or MIDAS) approach. Since this approach is relatively

new, we describe it more in detail. We start by formulating a MIDAS forecasting regression:

‘max

J

VAL = ik + ox Z O (4, 0)ri_; + enp (2.1)

J=0

where V% | is a measure of (future) volatility such as realized volatility, e.g. VX, = RV},
= Z?erfﬂ and by (j,60) is a parsimonious weighting function parameterized by a low-
dimensional parameter vector 6. The intercept p, slope ¢, and weighting scheme parameters
0 are estimated with QMLE. The regression involves data sampled at different frequencies,
since in this study, the realized volatility in equation (2.1) is measured at horizons ranging
from one day (k = 1) to three months (k = 60), whereas the regressors are available at
daily frequencies. For instance, equation (2.1) relates the realized volatility over the month
of, say, December (measured from the close of the market during the last trading day of
November to the close of the market during the last trading day of December) with daily
squared returns up to the last day of November. The weights placed on the predictive lagged

squared returns are estimated in-sample and used to form an pseudo out-of-sample forecast.

As noted before, the lag coefficients by (j,6) are parameterized to be a low-dimensional

function of underlying parameters 6. Without this parametric restriction, the number of

2
t—j

sample overfit and poor out-of-sample forecasts. A suitable parameterization of by(j,0)

parameters associated with the forecasters r;_ . would proliferate significantly, leading to in-
circumvents the problem of parameter proliferation and is one of the most important
ingredients in a MIDAS regression. We consider several parameterizations of by(j,6), some
of which have already been suggested in previous work. Specifically we consider the following
five specifications: We postulate a flexible form for the weight given to the squared return

on day t — d:



1. Exponential:
exp{61j + 625%}
2?20 exp{@li + 927:2} )

This scheme guarantees that the weights are positive (which in turn ensures that the

bi(j, 01,02) = (2.2)

forecasted volatility is also positive) and that they add up to one. Also, the functional
form in equation (2.2) can produce a wide variety of shapes for different values of
the two parameters, and it is parsimonious, with only two parameters to estimate.
Finally, as long as the coefficient k4 is negative, the weights go to zero as the lag length
increases. The speed with which the weights decay controls the effective number of

observations used to estimate the conditional volatility.

2. Beta: ;
br(J,01,02) = jfa(xjma“fhez) (2.3)
i=1 f(W791§92)
where: f(z,a,b) = 2471(1 — 2)*71/B(a,b) and B(a, b) is based on the Gamma function,
or B(a,b) = I'(a)I'(b)/T'(a + b). Specification (2.3) was introduced in Ghysels, Santa-
Clara, and Valkanov (2002) and further explored in Ghysels, Sinko, and Valkanov

(2006). One appealing feature is positivity of the coefficients, which is necessary for a.s.

positive definiteness of the forecasted volatility. For §; = 1 and 6, > 1 one has a slowly
decaying pattern typical of volatility filters, which means that only one parameter
is left to determine the shape, whereas in the case of §; = 6, = 1 we obtain equal
weights, which corresponds to a rolling estimator of the volatility (French, Schwert,
and Stambaugh (1987a), (2005)). The flexibility of the Beta function is well known
and it is often used in Bayesian econometrics to impose flexible, yet parsimonious prior
distributions. The function can take many shapes, including flat weights, gradually

declining weights as well as hump-shaped patterns.

3. Linear:
b(j) = 1/57 (2.4)

is the truncation point specified above. This simple decay functional form

Fmax

where j
has the advantage that there are no parameters to estimate in the lagged weight

function and might offer good out-of-sample forecasts.



4. Hyperbolic: .
, 9(s0az,0)
b (4,0) = —gmar—— (2.5)
i=1 Q(Wae)
where g(j,0) = T'(j+0)/ (I'(j + 1)I'(#)) which can be written equivalently as ¢g(0,6) = 1
and g(j,0) = (j+6—1)g(j—1,0)/7, for j > 1. The above Gamma functional form has

only one parameter to estimate. While it is not as flexible as the Beta specification,

it has been extensively used in the volatility modeling literature particularly in the
context of ARFIMA long memory specifications (see e.g. Campbell, Lo, and MacKinlay
(1997) and Andersen and Bollerslev (1998a)). The weights in (2.5) decay hyperbolically
rather than exponentially (Hosking (1981)). The weights are the normalized (or
proportional to the) impulse response of a truncated ARFIMA model. They are the
impulse response of a ARFIMA model (see, Hosking (1981) and Tanaka (1999) and

references therein).

5. Geometric: ,
i

2iso b

where |0| < 1, and b (7, 0) are normalized so that they sum up to one as in the previous

(2.6)

specifications. This specification is almost identical to a GARCH(1,1) model.

We also estimate two restricted versions, denoted by “Exp. Rest.” and “Beta Rest.,” with
6y = 0 (Exp. Rest.) and #; = 1 (Beta Rest.). These restrictions are to ensure a slowly
decaying pattern of the weighting functions. Moreover, the linear scheme is the simplest
MIDAS-type model that sets all weights equal to each other. It therefore reduces to the
rolling-window estimator in the spirit of French, Schwert, and Stambaugh (1987a). The
interest on this "naive” specification is that we can address whether more sophisticated
specifications are able to yield better out-of-sample estimates. In other words, we can
address whether the forecasting power of the MIDAS approach comes from simply using
a rolling window (i.e., a conditional estimator), or also from using a weighting function that
acknowledges that remote observations may be less important to forecast future volatility.
Obviously, in this comparison, the forecasting horizon is expected to play an important
role. Our statistical analysis will reveal that, at short-horizons, any of the MIDAS filter

outperforms easily the linear specification.

The MIDAS forecasts are denoted by Vi, (T, 1y, It), or Vi, (T, 1;). Whenever necessary, we
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will specify the weights used in the forecasts, which implicitly capture the dynamics of the
conditional volatility. Larger weights on distant past returns induce more persistence on
the volatility process. The weighting function also determines the statistical precision of the
estimator by controlling the amount of data used to estimate the conditional volatility. There
is a tension between capturing the dynamics of volatility and minimizing measurement error.
Because volatilities change through time, we would like to use more recent observations to
forecast the level of volatility in the next month. However, to the extent that measuring
volatility precisely requires a large number of daily observations, the estimator could still

place significant weight on more distant observations.

Some of the above weight specifications have been used in the previous literature, while
others are new to the MIDAS framework but not to the volatility forecasting literature. The
exponential lag structure has been suggested by Ghysels, Santa-Clara, and Valkanov (2005)
to study the risk return tradeoff, while the beta lag has been used in Ghysels, Santa-Clara,
and Valkanov (2006) in comparing short-horizon forecasts using different predictors. The
linear lag is a simple natural benchmark, with no parameters to estimate. Hence, it may
prove robust out-of-sample. The hyperbolic weights are similar to the impulse responses
of ARFIMA models which have been successfully used in the volatility literature (see e.g.
Andersen, Bollerslev, and Diebold (2003)). The geometric weights provide a MIDAS model
that is the closest and easiest to compare to a GARCH(1,1) model. The weights can also
be specified as a step function with a predetermined number and relative magnitude of the
steps. The step function specification presents the most data-mining problems, but is also the
simplest to implement. Corsi (2004) and Forsberg and Ghysels (2006) use this specification

to model the volatility of stock returns.

We can think of the mixed-data regression (2.1) as combining the attractive features of the
iterated and direct forecasts. Notice that we can vary the forecast horizon by changing
k, whereas the predictive variables remain the same and allow us to explore the richer
information set Ir. This is not true for the direct approach, where the predictive variables
change with the horizon and estimation and forecasts are formed using information set
I% C Ip. In the MIDAS forecasts, it is not the regressors that change but the estimated
shape of the lag function b, thus changing the weights placed on the lagged daily squared
returns. Moreover, we form direct forecasts of future volatility at the horizon of interest
without having to iterate over forecasts. This is in contrast with the iterated GARCH

forecasts. Therefore, we use (2.1) to side-step the iteration and aggregation issues associated

11



with iterated forecasts as well as the inefficient use of lagged returns that is characteristic of

the direct approach.

While the MIDAS approach to formulate forecasts is quite general, we focused on regression
(2.1) for several reasons. First, we could have extended the number of regression to include
not only daily squared returns but other volatility forecasts such as daily absolute returns,
daily range measures (high-low), and others, as done in Forsberg and Ghysels (2006)
and Ghysels, Santa-Clara, and Valkanov (2006). We use daily squared returns only in
order to make this forecast as directly comparable with the GARCH forecasts as possible.
Moreover, the comparison of the squared daily return predictors to other predictors at shorter
horizons have already been investigated extensively in Forsberg and Ghysels (2006) and
Ghysels, Santa-Clara, and Valkanov (2006). MIDAS regressions typically do not exploit an
autoregressive scheme, so that rf_j is not necessarily related to lags of the left hand side
variable. Instead, MIDAS regressions are first and foremost regressions and therefore the
selection of rf_j amounts to choosing the best predictor of future volatility from the set
of several possible measures of past fluctuations in returns. In other words, MIDAS is a

reduced-form forecasting device rather than a model of conditional volatility.

2.4 Other Forecasting Approaches: Scaling and Integrated

There are many other approaches, some of which we have tried. In this section, we discuss
these approaches. The first one is the scaling approach. It involves estimating a daily
volatility forecasting model up to time ¢, using it to form a forecast of the volatility at
day t + 1 and scaling this forecast by vk, where k is the length of the horizon of interest.
This forecasting method assumes that log returns are i.i.d. It has been documented of not
being appropriate in forecasting long-horizon volatility by Christoffersen and Diebold (2000),
Diebold, Hickman, Inoue, and Schuermann (1997), among others. However, its prominence
in applied work is undisputed, largely due to J.P.Morgan/Reuters’s (1996) widely adopted

Riskmetrics approach and the suggestions in the Basel II agreement.

An alternative approach is to compute volatility forecasts using an AR(p) model based on
passed realized volatility estimates. Such an AR(p) approach has been used by French,
Schwert, and Stambaugh (1987b), Schwert (1989) with daily returns and more recently by
Andersen and Bollerslev (1998a), Andersen, Bollerslev, Diebold, and Labys (2001), and

others with higher frequency data. Based on these papers, we have also considered the
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following specifications. First, we have estimated a general AR (p) model of realized volatility,
where the lag selection is done in sample using the AIC and BIC. From an out-of-sample
MSE criterion perspective, the selected AR(p) model fails to significantly outperform the
AR(1) model for most assets. Second, Andersen, Bollerslev, Diebold, and Labys (2001) and
Andersen, Bollerslev, and Diebold (2003) provide compeling evidence that realized volatility
has long memory. However, those papers are conducted with high frequency, 5-minute
returns to forecast daily volatility. Since we have only daily returns, we fail to find long
memory and ARFIMA (p,d,0) dynamics are rejected in favor of a simple AR(p) model in-
sample. Also, out-of-sample forecasts of the best ARFIMA (p,d,0) model are dominated by
those of the AR(1). These results are remeniscent of those in Hansen and Lunde (2005).

After a rather extensive preliminary search, we use the AR(1) model. We compute realized
volatility at horizon k to directly forecast the realized volatility over the horizon of interest.
From that perspective, this is a direct approach. It can also be viewed as a restricted version
of a MIDAS model, where the weights on lagged returns are not estimated but are rather

equally weighted.

Another natural alternative is to use the unconditional volatility, either computed from daily

or k-period returns, to forecast as a forecast of future volatility.

3 Comparing the Forecasts

Once we have the forecasts Vp (T, 1), Vi (T, 1x) and V(T 1;), we need to decide which one
is the closest to the true volatility. To answer this question, we need to tackle three related
issues. First, since the true k-period volatility is unobservable, we will need to proxy for it.
Second, in evaluating the forecasts, we have to agree on an appropriate loss function. Given
the first issue, we require a loss function that produces robust rankings of the forecasts even
in the absence of true volatility. Finally, to gauge the statistical significance of the predictive
gains or losses, we need a test that takes into account the uncertainty involved in producing

the forecasts. We address these issues below.
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3.1 Proxy for Unobservable Long-Horizon Volatility

The pseudo out-of-sample forecast error is
hri = Ve(T, 1) — V(T 1)

where Vp(T,1;) is the forecasted volatility (either Vp (T, 1x), Vi(T, 1x), or Vi (T, 1;),) and
Vp(T,1;) is the true population volatility. The forecasting error e}, is indexed by the
forecasting method (subscript) and by the horizon (superscript). However, we cannot obtain
e’}j 41 because the true volatility is unobservable. Hence, we use the realized volatility
RV, as a proxy for Vp. Andersen and Bollerslev (1998a) and subsequent work show that
the realized volatility is a good proxy for the true volatility, or at least much better than
squared returns. The realized volatility is computed using high-frequency returns. The
consensus in that literature is that we need data that is very frequent. Unfortunately, we
do not have access to high-frequency data for our sample period, nor for the size, book-to-
market, and industry portfolios in the cross-section. Hence, we use the highest frequency
data that is available to us — daily returns — to compute the realized volatility at horizon k.
Given that we don’t have high frequency data, the estimated RV/f,, will be a noisy proxy
of the true underlying volatility. We have to keep that in mind when ranking the forecasts
which makes choosing the appropriate loss function that much more important. We turn to

that issue next.

3.2 Ranking the Forecasts: Appropriate Loss Function
Using RV.E 1, we compute the feasible out-of-sample forecast error
u];“,T+1 = RVII“C—H — Vp(T, 14,1)

and the sample MSFE at the k-horizon:

Ty
1
k __ § k \2
t=T1

The sample MSFE is computed for each forecasting horizon k and for each forecasting

method F. For a horizon k, the empirical efficiency of the forecasts is assessed by comparing
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the respective MSFEs. The ranking that we thus obtain will be consistent in the sense of
Patton (2007). He showed that when we used the MSFE function, a forecast that dominates
using the feasible errors %, will also dominate using the infeasible e} ,. In other words, the
error introduced from using a proxy rather than the true volatility will not change the ranking
of our forecasting methods. This robustness property is not shared by some other popular
forecasting evaluation methods, such as the mean absolute forecasting error (MAFE). Hence,

we focus on the MSFE as a loss function to evaluate the forecasts.

To summarize, since all forecasts are compared against the same volatility proxy and the
MSFE is a consistent loss function, our conclusions should not be affected by the noisy

measurement of volatility.

3.3 Tests for Predictive Ability

A test for predictive ability of two competing forecasting methods, F'1 and F2, can be

formulated as the following null hypothesis:

Ho : E[(ufy 1) = (uj,)?] = 0 (3.7)

While this setup was first proposed by Diebold and Mariano (1995), their testing procedure
was valid under the assumption that the parameters of the model are known. West (1996)
derived an asymptotic test of the above null under parameter uncertainty. Since parameter
uncertainty is of great concern in volatility forecasting, we use the West (1996) as one of the

two tests in our forecast comparisons.

An alternative hypothesis of predictability was proposed by Giacomini and White (2006),

who argue that a more practically relevant hypothesis is:

Hy : B[((up1)* = (wf2)?) [Tea] = 0 (3.8)

where I;_; is the information set available at time ¢ — 1. The rational for this test of
conditional predictive ability is that the unconditional test of West (1996), while accounting
for parameter uncertainty, fails to capture more general forms of model uncertainty. To see
that, notice that the unconditional test for (3.7) will tend to choose a forecast based on

a correctly specified model. However, as argued by Giacomini and White (2006), “even a
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model that well approximates the data-generating process may forecast poorly, for example
in the case that its parameters are imprecisely estimated.” In our multi-horizon volatility
forecasting setup, the focus is squarely on volatility forecasting. Since our goal is to choose
the most accurate forecasting method, the uncertainty is not only in the parameters but
also in the model that we need to choose. For instance, we will be comparing iterated
versus direct, versus MIDAS approaches. Also, we will be comparing the forecasts at various
horizons. Hence, the conditional test of predictive ability of Giacomini and White (2006) is
quite appropriate in our application and we will use it in conjunction with the West (1996)
test.

In the empirical section, we will use both the West (1996) and Giacomini and White (2006)
tests, because the difference in these tests hinges on our view of the source of uncertainty.
We can see that by noticing that these are tests of two different null hypotheses. We cannot
ultimately say which test would be more appropriate in our application (i.e., accurate size
and higher power). Moreover, we don’t want our results to be predicated on the choice of
the test. Hence, the statistical significance will be computed under both (3.7) and (3.8).

4 Data and Results

We present in this section the empirical results, starting with a data description.

4.1 Data

We have daily CRSP log returns for the period July 1, 1963 to December 31, 2007. Using
these returns, we compute k-period continuously compounded, non-overlapping returns RF,
for k =1 (daily), k = 5 (weekly), 10 (bi-weekly), 15, 20 (monthly), 25, 30, 60 (quarterly).
We also have data of five daily size, five daily book-to-market, and ten industry portfolio
returns obtained from Kenneth French’s website. In sum, we will forecast the volatilities of
21 portfolio returns (market plus 20 portfolios) at various horizons . The dataset is standard
in empirical finance and, in the interest of conciseness, we do not provide returns summary

statistics®.

The log daily returns are used to estimate the GARCH and MIDAS forecasting models.

3They are available upon request.
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They are also used to compute the realized volatility RV} for each horizon k as a proxy

for the true (unobservable) volatility. The long-horizon returns RF are used in the direct
GARCH forecasts.

4.2 Results

Table 1 provides the summary statistics of the multi-period forecasts for the various models.
All forecasts are out-of-sample as described above. We consider seven MIDAS models, an
iterated GARCH (1,1), a direct GARCH (1,1), and an integrated GARCH. As a reference,
we also provide the statistics of a scaled GARCH(1,1) as well as the realized volatility that is
used as proxy for the true next-period volatility. We have also tried numerous higher order
GARCH(p,q) models for p=1,...,6 and ¢ = 1, ..., 6 as well as the asymmetric GJR-GARCH
of Glosten, Jagannathan, and Runkle (1993), for iterated and direct forecasts. However,
these forecasts were almost always dominated by the GARCH(1,1) model in terms of multi-
period, out-of-sample MSFE. This is a multi-period version of the results of Hansen and
Lunde (2005) who show that a simple GARCH(1,1) has a smaller one-period out-of-sample
MSFE than more richly parameterized GARCH models. Hence, we focus on the direct and
iterated GARCH(1,1) models from this point onward in the interest of brevity.*

The statistics that we display-the annualized mean, annualized volatility, skewness, kurtosis,
first-order autocorrelation, and probability of a forecast being higher than the realized
volatility—can be summarized as follows. First, all forecasts are upward biased, as their
means are higher than the averaged realized volatility. Moreover, the probability of all
models to predict a volatility higher than the next period volatility is about 65 percent
across horizons and most models. The direct GARCH is an exception as its bias is higher
than that of the other approaches and its probability of over-prediction is about 70 percent.
This upward bias is undoubtedly due to outliers such as October 1987 that non of the above
models can accommodate. When we exclude the three highest volatile months from the

sample, the bias is significantly reduced.

Second, the multi-period forecasts are much less volatile than the multi-period realized
volatility. The square-root rule is extremely smooth at all horizons, which is the main reason
for its poor forecasting performance. The GARCH and MIDAS models are much more time-
varying, but their volatility is still about 50 percent lower than that of the realized volatility,

4The results from the other GARCH models are available upon request.
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at all horizons. Third, all multi-period forecasts are significantly more skewed than the
realized volatility. The exception is the square-root rule whose skewness is less than that of
the realized volatility. Finally, while the multi-period realized volatility is quite persistent as
are the GARCH forecasts, some of the MIDAS models, such as the exponential and restricted

exponential MIDAS, exhibit significantly less serial correlation.

In Table 2, we compare the direct, iterated, and MIDAS forecasts to the scaling-up approach.
Scaling the one-period volatility by the horizon k is admittedly a naive approach and is not
directly comparable to the other three methods. The summary statistics in Table 1 also
suggest that it may not be the best forecasting approach. However, despite the evidence
against this method (Diebold, Hickman, Inoue, and Schuermann (1997)), it is still widely
used in practice.” We use the scaling approach as a benchmark not because we think it is a
particularly hard forecast to beat, but because of its widespread use in the profession. The
MIDAS forecasts are computed using the hyperbolic specification (2.5), which as we will see

below has some desirable properties.

In panel A, we report the level of the MSFE, 5, 10, 15, 20, 25, 30, and 60 days ahead in
addition to the one-period ahead forecast. Not surprisingly, the MSFEs increase but at a
rate slower than vk. The one-period ahead forecasts of the iterated, direct forecasts are
the same, by construction. However, they differ as the horizon k increases. At five periods
ahead, the iterated, direct, MIDAS, and integrated forecasts have comparable MSFEs. The
k-rule forecasts are the exception with significantly higher MSFEs. As the horizon increases,
the MSFE of the k-rule is similar to that of the direct forecasts. In fact, at horizons of
20 periods and higher, the k-rule forecasts are better than the direct forecasts, while the

integrated forecasts are slightly better.

This pattern is perhaps best observed in Panel B, which reports the MSFE’s of the forecasts
relative to that of the square-root rule. All other forecasts dominate the scaling rule at
shorter horizons of 5 to 10 days. As horizons longer than 10 days, the relative forecasting
performance of the iterated and integrated methods subside and the direct forecast actually
has higher MSFE by as much as 23 percent at 60 days. The rapid deterioration of the long-
horizon direct forecast is consistent with the findings of Christoffersen and Diebold (2000).
The relatively lower advantage of the iterated forecast is also consistent with the theoretical

papers that have emphasized the bias of the iterated forecasts. As the iterations increase,

5This method has been mentioned in the Basel II agreement, which might explain to a great extent is
use by professionals.
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so does the bias. Hence, our results suggest that the iterated method is clearly suitable for

shorter horizon forecasts in the range of 5-period (one week) to 20-periods (one month).

The MIDAS method produces the best forecasts at long horizons. In Panel B, its relative
MSFE is better than the scaling rule at 5-period ahead forecasts and higher. More
importantly, its forecasting performance does not deteriorate nearly as rapidly as that of
the other methods. At all horizons, it produces the best forecast and its advantage relative
to the other methods increases steadily. At 60 days, its MSFE is about 23 percent lower
than that of the scaling rule. The long-horizon forecastability of the market volatility with
the MIDAS is a new finding.

To judge the statistical significance of the forecasting improvements, we use the West (1996)
and Giacomini and White (2006) tests for predictive ability. As discussed in section 3.3,
the first method is unconditional whereas the second is conditional. Henceforth, we report
asymptotic p-values from both tests in Panels C and D of Table 2, as they test for different
null hypotheses. If the p-value is smaller than 1 percent, we display 0.00. The following
results are worth noting. The direct forecasts are insignificantly better than the scaling rule
at a the 20-day horizon using the West (1996) test. At longer horizons, the scaling rule is
actually significantly better than the direct forecast using both tests. This suggests that the

direct method should not be used for multi-period volatility forecasting.

The other forecasting methods are significantly better than the scaling approach. However,
their superior performance deteriorates rapidly with k. At the longest forecasting horizon
we consider, k = 60 days, the iterated forecasts are not statistically better than the scaling
rule, according to the West (1996) test whose p-value is 0.08. The MIDAS forecasts stand
out in Table 2 as providing the best multi-period ahead predictions. Even at 60 days, their
superior performance is statistically significant at one percent under the West (1996) and
Giacomini and White (2006) tests.

As a final comparison, we test whether the best performing test, at any horizon, is
significantly better than the second best forecast. Significance at the five percent level using
the West (1996) and Giacomini and White (2006) tests is denoted by bold the numbers in the
table. For the one-period forecasts, the direct and iterated GARCH methods dominate all
other approaches. At 10 day horizons and longer, however, the MIDAS forecast is statistically
significantly better than the other forecasting methods which confirms its superior multi-

period forecasting performance.
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It might be argued that the MIDAS approach has an unfair advantage in this out-of-sample
exercise, because we have chosen the hyperbolic specification (2.5) which is known from
previous work to produce good results. While the same comment can be levied against the
other methods, it is interesting to see whether alternative polynomial specifications produce
vastly different forecasts. In Table 3, we compute the MSFE of various MIDAS specifications.
The polynomial weights that we use in the MIDAS are the hyperbolic (2.5), the linear (2.4),
the beta (2.3), the exponential (2.2), and various specifications of step functions (2.6). We
also display the MSFE of the iterated forecast (as a reference) which was shown to produce

the best prediction among the non-MIDAS approaches.

Panel A of Table 3 provides the MSFEs which are directly comparable with Table 3, while
Panel B provides the MSFEs relative to the iterated approach. Focusing our attention on
Panel B, we note that exponential weights are the worst overall. While these weights have
been used successfully by Ghysels, Santa-Clara, and Valkanov (2005) to estimate the risk
return tradeoff, in the context of volatility forecasting, they are dominated by the other
methods. It is not surprising to find that different weights will be appropriate in different
applications. The suitability of the weighting function will be determined by the stochastic
properties of the predicted variable and it is not reasonable to expect one functional form of

br (7,0) to dominate across applications.

The hyperbolic specification produces the best multi-period forecasts. This is not surprising,
given that it is very similar to an ARFIMA model (whose impulse response function is
also hyperbolically decaying) and ARFIMAs produce good out-of-sample forecasts of future
volatility (cite). However, it is interesting to note that the beta and most of the step
specifications produce very good results, as well. With the exception of the exponential

MIDAS, all other models dominate the iterated forecasts at long-horizons.

Tables 4, 5, and 6 display results similar to those of Table 2 for the five size, five book-
to-market, and ten industry portfolios, respectively. In the interest of conciseness, we have
omitted the k-rule forecasts, as they are inferior to the alternative models for all portfolios
and all horizons. First, we notice that the portfolio MSFE across forecasting methods are
larger than the corresponding market MSFE in Table 2. In other words, the volatilities of

the portfolio returns are less predictable than the volatility of the market portfolio.

Looking at Panel B of Table 4, the MSFE of the direct forecasts are markedly higher than
those of the MIDAS and iterated forecasts. For the smallest cap stocks, they are about 369
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percent larger at 60-period ahead. For the largest cap stocks, they are about 37 percent larger
and the decrease is monotonic. Hence, the direct approach is particularly inappropriate to
use for volatile, small-cap stocks. Turning to the significance results in Panels C and D, the
MSFEs of the MIDAS are significantly lower than those of the iterated forecasts, especially
at long horizons. Moreover, the large cap stocks are significantly more predictable than
are smaller cap stocks. Tables 5 and 6 contains similar results for the book-to-market and
industry portfolio returns. A slight difference is that volatility of these portfolio returns
seems to be more forecastable that of the size portfolios as the levels of the MSFE in Tables

5 and 6 are lower than those in Table 4.

5 Conclusion

We consider two widely used methods to forecast volatility at long horizons: iterated and
direct forecasts. In addition, we use a relatively new third approach — MIDAS. All three
approaches yield multi-step ahead volatility forecasts without relying on the restrictive
assumption of i.i.d. returns that is implicit in the often-used scaling approach. We compare
these forecasting methods in terms of their average forecasting accuracy—using the MSFE.
Since no general analytic results are possible, the comparison is carried out using daily
stock market returns from 1963 to 2007 for the US stock market as well as five size, five

book-to-market, and ten industry portfolios. All forecasts are (pseudo) out-of-sample.

The MIDAS forecasts are significantly more precise than the direct and iterated forecasts
according to the West (1996) and Giacomini and White (2006) tests of predictive ability.
We also document sizeable differences in the two tests. We conjecture that the gains in
forecasting power in the MIDAS approach are due to the ability of the approach to take
advantage of the bias-efficiency trade-off that exists in multi-period forecasts. While the
other two approaches are either efficient but biased (iterated) or unbiased but inefficient
(direct), the MIDAS strikes a balance between the two.
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Tables

Table 1: Sample Statistics of Multi-period Volatility Forecasts — Market Portfolio.

The table reports standard descriptive statistics for the volatility forecasts time-series at
different horizons from different forecasting methods. The out-of-sample forecasts obtain by re-
estimating the model at each step and using it to formulate a k-period ahead prediction

(k=1,...,60). The data is from July 1, 1963 to December 31, 2007. The first 4,000 daily
observations are used to estimate the first forecast. The forecasting models include the MIDAS
method with the different weighting-functions discussed in the main text, the AR(1)-
GARCH(1,1) iterated method, the AR(1)-GARCH(1,1) direct method, integrated volatility
method from an autoregression, and the scaling-up (or square-root rule) method. The entry
Proxy shows the values of the sample statistics for the true volatility process proxied by the
realized volatility. The sample statistics include the annualized mean value of the volatility
forecasts, the annualized standard deviation, skewness, kurtosis, first-order correlation and the
sample frequency of overprediction in relation to the proxy considered.

Horizon Horizon
Method 1 5 10 15 20 25 30 60 1 5 10 15 20 25 30 60
Annualized Mean (%) Annualized Vol. (%)
¥ HYPERB 1406 1404 1410 1413 1419 1423 1424 1431 527 a02 434 414 417 416 403 344
¥ s LINEAR 1434 1431 1428 1427 1427 1427 1427 147 408 372 33/ 321 311 305 299 272
¥ BETA 13687 1384 1421 1424 1422 1443 1414 1415 967 530 644 488 BZ7 580 463 308
¥ BETAREST 1394 1386 13593 1411 1418 1419 1422 1438 545 824 447 429 4T6 48B3 451 383
¥ EXP 1391 1385 1406 1415 1420 1423 1420 1436 271 5823 449 400 524 483 464 360
¥V ERP REST 1414 1386 1401 1409 1413 1414 1416 1424 407 472 392 330 364 318 250 284
¥ GEOMET 1394 1384 1383 14.06 1415 1418 1420 1435 872 832 481 447 490 477 450 383
W 1384 1388 1393 1397 1400 1403 14068 1417 624 BO9 593 578 564 552 540 482
Vo 1384 1525 1558 1574 1564 1562 1557 1530 B.24 547 534 482 416 3EZ 3589 4N
W int 1408 1405 14.08 1410 1412 1416 1417 1419 118 485 432 413 402 383 374 273
& 1408 1408 14.08 14.08 1408 1408 1403 14038 118 118 118 118 118 118 118 118
PROXY 1052 1285 1323 1339 1350 1353 1364 1383 104 820 758 729 F10 EBS  B83 B39
Skewness Kurtosis

¥ HYPERE 624 481 &5B/5 505 570 583 541 374 1680 5637 7163 5644 7153 7441 b4.84 25333
¥s LINEAR 318 312 301 299 300 303 3100 33 1729 1704 1640 1655 1670 16BS 1739 1941
Vs BETA 2280 569 BB 586 947 833 898 243 101030 7442 6720 5520 13000 9659 13642 1311
Wi BETAREST 1921 B20 BS3 640 708 736 6B3 3.6 T96.37 8291 9111 8013 91.52 10312 86827 1973
s EXP 2371 518 bS5l B45 722 882 F44 556 109486 5892 9264 7952 8757 12847 10341 5530

¥ EXPREST 4785 433 531 513 5804 724 643 610 423784 4953 V368 6201 18413 12304 11091 8165
W GEOMET 2308 &E2 B8 585 77 BY B0 323 107960 6875 8223 7035 9739 9485 5723 2145

Wi 419 43 446 460 474 487 500 564 3534 FIA0 3949 4M74 43584 4610 4321 5961
Vo 419 328 458 24 229 243 210 374 3534 2271 4844 1438 1521 2087 11958 3497
W int 032 1614 1420 1154 9585 8891 783 4455 260 43573 331.36 210.38 15233 12083 89555 3716
Jew, 03 03 03 032 032 032 032 032 260 260 260 2B0 260 260 260 2ED
PROXY 477 AT1 442 404 372 347 326 243 7872 8830 4632 3651 3044 2581 22583 1325
First-order Autocorrelation Prob. Overprediction
¥ i HYPERE 08 020 0% 052 082 092 09 0% 072 067 0B 087 06 0B 0B 085
W LINEAR 100 100 099 09 100 100 100 1.00 074 070 070 070 O0B2 0B 0B 065
I ¢ BETA 073 068 088 054 084 09 093 0% 072 0B4 0B 067 0BS 0B7 066 064
¥ BETAREST 073 073 080 085 083 0920 092 09 072 065 068 0B 0B 0B 0B5 065
I g EXP 0Es 066 043 057 087 091 092 06 072 0B4 0OBs 0BS5S 065 O0BS 0BS5S 063
¥u EXP REST 014 020 021 026 022 024 DX 0% 074 0B5 0B 0B O0B4 0B4 D0B4 063
¥ GEOMET 068 063 071 083 080 08 091 085 072 0B4 0B5 0B 0B 0BS5S D065 064
Wt 09 09 0% 05 083 09 09 095 071 065 064 0B4 O0OB4 0B84 0B4 063
Vo 09 083 077 085 084 085 D20 083 071 073 07 075 074 073 072 067
W int 100 086 0% 09 05 088 09 099 074 067 067 0B 066 O0B6 065 064
e, 100 100 100 100 100 100 100 1.00 074 062 0B 0B O0B4 O0B4 D0B4 062

PROXY 017 081 0% 088 093 0% 08 100 - - - - - - - -




Table 2: Multi-Period MSFEs of Volatility Forecasts — Market Portfolio

The table reports mean square forecasting errors (MSFE) of the market volatility from the
iterated method, V,, direct method, V,, MIDAS with hyperbolic weights, V;, HYPERB,

integrated V;,,, and scaling-up +kv: methods. The out-of-sample forecasts obtain by re-estimating
the model at each step and using it to formulate a k-period ahead prediction (k=1,...,60). The
data is from July 1, 1963 to December 31, 2007. The first 4,000 daily observations are used to
estimate the first forecast.

Panel A reports the level of the MSFE's (the smallest MSFE given k is in bold letters).

Panel B reports the wvalues of the Improvement Ratio, which is defined as
100*[MSFE(Benchmark)-MSFE(Alternative)|/MSFE(Benchmark), where the benchmark model
is the scaling-up method. Panel C reports the p-values of the West's tests for equal forecasting
ability, whereas Panel D reports the p-values of the test for equal conditional forecasting ability
of Giacomini and White.

Horizon Horizon

1 ] 10 15 20 28 30 60 1 5 10 15 20 25 30 60
Method Panel A: MSFE of ALL models (x10000) Panel B: Improvement Ratio over J'i;fﬁ rule (%)
Var HYPERE D48 085 167 239 312 378 439 795 955 3140 2937 2689 2476 2385 2380 2147
Vi D48 089 171 244 315 385 453 862 1047 2892 2788 2551 2388 2248 21129 1486
Vo 048 114 224 310 442 507 614 1250 1047 1817 482 528 051 216 -BABS 2351
Vint 0.81 108 189 287 3683 431 486  8AY -4980 2243 1583 1247 1240 13189 1558 1432
J};T/l 054 139 236 328 414 447 576 1012 - - - - - - - -

Panel C: West test p-values Panel D: GW test p-values:

Vir HYPERB 000 o0oo 00D OO0 00D 000 000 000 goo opo OO0 0DD 0OD OO0 OOO 000
Vi 000 ooo 00D OO0 00D OO0 000 008 goo opo OO0 0DD 0OD OO0 OOO 000
Vo p.oo ooo 004 000 038 007 000 000 goo ooo 000 0Do 000 o000 000 000

Vint 000 000 000 000 000 000 000 000 000 000 000 000 000 000 0.00 000




Table 3: Multi-Period MSFEs of Volatility Forecasts — Market Portfolio.

The table reports mean square forecasting errors (MSFE) of the market return volatility for
various MIDAS specifications. The specifications include the hyperbolic model, denoted
Var HYPERB; the linear model, denoted /27 LINEAR; the unrestricted and restricted versions
of the beta model, denoted Jis BETA and Vs BETA REST, respectively; the unrestricted and
restricted versions of the exponential model, denoted Fir EXP and JVisr EXP REST,
respectively, and the geometric model, denoted /27 GEOMET. As a reference, we also report
the MSFE of the iterated model. The out-of-sample forecasts obtain by re-estimating the model
at each step and using it to formulate a k-period ahead prediction. The data is from July 1,
1963 to December 31, 2007. The first 4,000 daily observations are used to estimate the first
forecast. Panels A,B,C, and D report the same statistical information as in Table 2 above, using
Var HYPERB (the model with smallest MSFE) as a benchmark.

Horizon Horizon
1 5 10 15 20 25 30 B0 1 5 10 15 20 25 30 60
Method Panel A: MSFE of ALL models (x10000) Panel B: Improvement Ratio over Vi HYPERB (%)
Vr LINEAR 052 117 1.94 287 338 4.05 4.72 860 -533 2219 1807 -1148 -8.31 -7.28 -71.52 -8.168
Vi BETA 0.52 112 2.32 283 442 577 548 957 -663 1687  -38.35 -18.12 4184 5281 2478 -20.35
V' BETAREST 051 1.09 1.86 258 3.54 4.18 4.83 8.58 -4891 14688 1197 -8.23  -1349 1079 -10.42 -8.00
Vi EXP 053 1.12 219 302 382 4.49 4.90 1094 -780 -1761 -3139 -2831 -22B9 -1887 1158 -37.849
Vu EXP REST 057 1.24 2.22 302 4.02 4 65 5.35 972 -17.23 4001 -33.36  -250580 -2891 -23068 -21.80 -22.31
Vi GEOMET 052 113 1.83 282 360 421 4.79 861 -723 1879 1582 -8.27 1543 -4 -8.20 -8.33
Vi 0.48 0.949 1.7 244 315 385 453 882 1.02 -362 -2.38 -1.89 -117 -1.83 -3.30 -842
Ve HYPERE 048 0.95 167 239 3.12 3.78 439 795 - - - - - - - -
Panel C: West test p-values Panel D: GW test p-values

Var LINEAR 0os 0.00 0.00 0.0o 0.oo 0.00 0.00 0.0o om 0.00 0.00 0.00 0.0o 0.00 0.00 0.00
Vi BETA 018 0.00 0.00 0.00 0.00 0.00 0.00 0.00 040 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Vi BETAREST 014 0.00 0.00 0.00 0.0 0.00 0.00 0.00 048 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Vi EXP 018 0.00 0.00 0.0o 0.oo 0.00 0.00 0.0o 038 0.00 0.00 0.00 0.0o 0.00 0.00 0.00
Vi EXP REST 0.0z 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Vi GEOMET 018 0.00 0.00 0.00 0.0 0.00 0.00 0.00 045 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Vi 0.34 018 0.33 0.33 044 039 0.34 024 091 002 0.02 0.02 0.0z 0.03 0.02 0.15




Table 4: Multi-Period MSFEs of Volatility Forecasts — Size Portfolios.

The table reports mean square forecasting errors (MSFE) of the return volatility of five size-
sorted portfolios. The forecasts are obtained using the iterated method, V), the direct method,
V,, the MIDAS with hyperbolic weights, V7, , and the integrated method, V,,. The out-of-
sample forecasts obtain by re-estimating the model at each step and using it to formulate a k-
period ahead prediction. The data is from July 1, 1963 to December 31, 2007. The first 4,000
daily observations are used to estimate the first forecast. Panel Al reports the level of the

MSFE'’s. Panels A B,C, and D report the same statistical information as in Table 2 above, using
Var (the model with smallest MSFE) as benchmark.

Horizon Horizon
1 5 10 15 20 25 30 60 1 17 10 15 20 25 30 60
Panel A: MSFE of ALL models (x10000) Panel B: Inprovement Ratio over Vi1 (%)
Size Method
1 Vi 033 084 1583 224 206 36% 433 818 582 -012  -083 081 148 209 -344 547
2 vy 042 091 1489 229 300 3vy0o 437 810 584 -036  -047 0.69 046  -0.11  -061  -1.84
3 vy 041 086 152 2718 284 349 411 7B 387 -023 046 0.70 023  -022 -086 -406
4 Vi 044 080 159 231 303 374 443 854 178 -138 075 042 115 177 351 -BIG
5 vy 056 116 188 281 361 440 517 8986 172 454 287 327 152 302 488 1241
1 Vo 033 148 3899 B09 977 1386 168 3647 5892 7748 -16383 -173.81 -23552 -28B.13 -303.18 -369.66
2 Vo 042 141 384 531 750 1003 1189 2308 5B4 -5587 -12969 -130.21 -14883 -171.59 -176.34 -190.15
3 Vo 041 129 3058 444 G168 809 852 1888 387 -80.33 -102.068 -102.37 -11651 -132.58 -133.81 -124.1%
4 Vo 044 126 271 386 518 643 763 1578 178 4113 -72.04 -B8.28 -7272 -7482 -78.850 -99.87
5 Vo 056 118 212 285 377 457 553 1202 -172  -657 1057 -5058  -623  -7.1 1221 -37.09
1 Vint 049 086 164 241 3N 374 4368 BB -3982  -245  -BOB -B23 673 A4AY7 432 514
2 Vint 067 085 176 260 334 402 462 858 -5086 436 -11.13 -12535 -1083 -BE2 -648 -782
3 Vint 0BE 080 170 250 318 383 433 810 -5588 471 -1284 -1388 -1180 -84 -7Y3 0 -BYO
4 Vint 072 086 179 285 333 406 465 BEB -B215  -728 1364 -1529 -1283 -1037  -B45 970
5 Vint 080 131 237 338 4325 500 558 955 -B409 -18.07 -2334 -2438 -1962 -17.18 -1328 -BOB
1 v 035 083 151 222 29, 357 418 7B - - - - - - - -
2 v 045 081 159 231 302 388 434 788 - - - - - - - -
3 v 043 088 151 219 285 348 407 748 - - - - - - - -
4 v 045 0B8 157 230 300 388 428 740 - - - - - - - -
8 v 055 1M 182 272 355 427 483 BIY - - - - - - - -
Panel C: West test p-values Panel D: GW test p-values
Size Method

1 Vr 000 048 044 045 043 041 D035 029 ooo 000 0.0o0 0.01 om 0.00 oo 0.08
2 Ve 000 042 043 044 046 049 D045 038 ooo 000 0.0o0 0.01 oo 0.01 003 0.13
3 Ve 000 045 044 044 048 048 041 020 ooo 000 0.0o0 0.01 oo 0.02 0.04 0.22
4 Ve 00s 032 043 047 043 038 030 018 026 000 oo 0.01 003 0.03 o7y 044
5 Ve 015 014 031 033 042 033 029 021 oos 002 o002 0.03 o o.o7 0.08 0.22
1 Vo ooo 000 000 000 000 000 000 000 onoo 0.00 o.0o 0.00 o.0o 0.00 o.0o 0.00
2 Vo ooo 000 000 000 000 000 000 000 onoo 0.00 o.0o 0.00 o.0o 0.00 o.0o 0.00
3 Vo ooo 000 000 000 000 000 000 000 onoo 0.00 o.0o 0.00 o.0o 0.00 o.0o 0.00
4 Vo oos 000 000 000 000 000 000 000 026 0.00 o.0o 0.00 o.0o 0.00 o.0o 0.00
17 Vo 015 000 000 001 001 000 000 000 ons  0.00 o.0o 0.00 o.0o 0.00 o.0o 0.00
1 Vit ooo 004 000 000 000 000 000 000 onoo 0.00 o.0o 0.00 o.0o 0.00 o.0o 0.00
2 Vit ooo 000 000 000 000 000 000 000 onoo 0.00 o.0o 0.00 o.0o 0.00 o.0o 0.00
3 Vit ooo 000 000 000 000 000 000 000 onoo 0.00 o.0o 0.00 o.0o 0.00 o.0o 0.00
4 Vit ooo 000 000 000 000 000 000 000 ooo o 001 o.0o 0.00 o.0o 0.00 o.0o 0.00
5 V int 000 000 000 000 000 000 D000 000 000 0.00 0.00 0.00 0.00 0.00 0.00 0.00




Table 5: Multi-Period MSFEs of Volatility Forecasts — Book-to-Market Portfolios.

The table reports mean square forecasting errors (MSFE) of the return volatility of five book-to-
market-sorted portfolios. The forecasts are obtained using the iterated method, V, the direct

method, V), the MIDAS with hyperbolic weights, V), , and the integrated method,

Vi

int*

The

out-of-sample forecasts obtain by re-estimating the model at each step and using it to formulate
a k-period ahead prediction. The data is from July 1, 1963 to December 31, 2007. The first
4,000 daily observations are used to estimate the first forecast. Panel Al reports the level of the
MSFE'’s. Panels A,B,C, and D report the same statistical information as in Table 2 above, using
Var (the model with smallest MSFE) as benchmark.

Herizon Herizon
1 5 10 15 20 25 30 60 1 5 10 15 20 25 30 60
Panel A: MSFE of ALL models (x10000) Panel B: Improvement Ratio over Vi (%)
BTM Method
1 ] 060 117 184 271 344 416 487 824 136 -2B3 -1B0 -D28 168 139 034 -228
3 Wi 0a0 103 177 254 328 402 472 886 1286 -3.488 -340 -371 -2.68 -389 -G48 -12.13
3 Wi 045 091 167 227 285 381 425 816 1.02 -447 448 471 -485 -549 -742 -14.30
4 W 040 082 1680 228 285 388 418  7aT -117 -488  -512  -BA9 -564 -1077 -1148 -12.28
] W 041 088 147 210 201 329 383 706 08s -308 -271 -289 -218 204 -327  -B83
1 Vo 08O 135 258 361 483 580 707 14587 1.36 -18.00 -34B8 -3362 -34.04 -376E -4484 -G1.27
2 Yo 0a0 122 246 348 439 550 B47 1337 125 -2183 4404 -4189 -368.75 -4231 -4580 -69.20
3 Yo 045 108 270 293 388 443 537 1128 1.02 -21.83 -3930 -35.18 -31.13 -2951 -3568 -57.69
4 Yo 040 089 173 239 313 380 484 912 -1A7 -1318 1507 -11.22 1229 -2055 -2365 -35.38
5 Yo 041 102 204 285 427 527 B47 1351 086 -2207 -4188 -4477 -B123 -6374 -7447 -104 .58
1 W int 102 127 228 323 405 477 636 868 -B6 BT -1136 -1848 1878 -1580 -1329 -474 -718
2 W int o83 112 202 282 370 436 483 B48 -B326 -1216 -1828 -1886 -1523 -1287 -1006 -7.33
3 W int 074 087 176 2586 326 388 440 772 -B367 -1065 -1683 -1808 -16.15 -1365 -1088 -B.10
4 W int 062 102 179 256 318 372 417 708 -66.28 -1661 -17.87 -19.03 -14.08 -1506 -11.18 -4.98
] W int 067 083 167 240 303 358 404 708 -B311 -11.33 -16.00 -17.87 -14.30 -11.27 -887 -7.17



Table 6: Multi-Period MSFEs of Volatility Forecasts — Industries Portfolios.

The table reports mean square forecasting errors (MSFE) of the return volatility of ten
industries portfolios. The forecasts are obtained using the iterated method, I/, the direct method,
V,, the MIDAS with hyperbolic weights, V7, , and the integrated method, V,,. The out-of-
sample forecasts obtain by re-estimating the model at each step and using it to formulate a k-
period ahead prediction. The data is from July 1, 1963 to December 31, 2007. The first 4,000
daily observations are used to estimate the first forecast. Panel A,B,C, and D reports the level

of the MSFE’s. Panels Al, A2, B1 and B2 report the same statistical information as in Table 2
above, using V7 (the model with smallest MSFE) as benchmark.

Horizon Horizon
1 5 10 15 20 25 30 60 1 5 10 15 20 25 30 60
Panel A: MSFE of ALL models (x10000) Panel B: Improvement Ratio over Vag (%)
Industry Method
MoDur e 044 095 157 220 281 340 3% 735 018 -424 -441 487 110 328 382 B
Durbl Vi 079 150 236 320 403 484 562 1006 0B 3268 <332 414 290 422 501 -B5S
tanuf ' 0s3 114 198 283 3B4 441 517 958 245 -305 260 159 -086 052 109 -4.41
Enrgy '8 082 1680 251 342 433 525 615 118 214 470 528 582 704 944 1109 1750
HiTec ' 112 1599 326 452 573 B9 BOs 15876 121 <170 236 207 133 176 -351 BO5
Telcm e 0Bs 132 213 285 375 441 522 934 -295 402 278 297 183 311 -489 042
Shops ' 0ed 119 193 289 341 410 479 900 1.7 007 030 183 373 318 246 181
Hith ' 0B4 130 210 250 364 436 507 915 117 177 238 141 0% 02 071 007
Utils '8 03 088 152 219 285 347 407 730 414 782 1081 1371 1639 1980 -19.83 2439
Other ' 053 1.02 185 266 343 417 488 881 012 282 3892 408 -41 485 £39 L4
MoDur Yo 044 107 1.9 283 365 465 548 1182 -0.18 -17.658 3042 -3492 -31.89 -41.29 -4328 65794
Durbl Vo 079 167 278 383 454 583 F09 1348 066 1477 2189 -2459 2624 2681 3251 4553
hanuf ¥ 053 140 289 3594 521 B34 753 1415 245 2684 -4981 -4201 -4406 -44.45 4717 -54.20
Enrgy Vo 082 165 269 377 500 B3IF 770 1BV 214 778 1289 1677 2343 3289 3913 5055
HiTec Vo 112 225 415 B0O0O 783 960 1185 2482 1.21 1518 -3012 -3551 -39.41 -41.34 5233 6564
Telcm Yo 0Bs 136 216 312 411 &05 B11 1406 -295 683 -422  BE7 1179 183 273 519
Shops Vo 0e0 145 282 418 5B2 703 B55 2140 1.75 2176 -4515 -5273 -58.63 B575 -74.09 -133.45
Hith ¥ 064 147 260 365 443 526 630 1200 117 1489 2655 -2772 -2190 19686 2343 -31.23
Utils Vo 036 104 179 247 320 399 467 926 414 2724 3023 -2817 3064 3752 G745 57 6B
Other Vo 053 140 278 35 536 BB 836 1841 012 -32.71 -86.11 -B4.16 -B2.53 -67.51 -80.54 -115.41
Molur  Wint 0Es 103 181 288 327 387 432 735 5522 -13.34 -2009 -2274 1788 1739 1255 -B25
Durbl I int 1.3 189 289 351 438 519 584 983 6765 -850 -1362 1428 1208 -1177 914 B2
Manuf  Wint 087 125 230 33 415 489 548 960 5938 1270 -1914 1929 14082 11580 739 463
Enrgy I int 1.3 173 284 391 473 553 626 11.33 £3.07 -12.89 -19.00 -21.13 -18.33 -1646 -13.10 -11.51
HiTec I int 188 225 390 545 BTFE 795 893 1649 7539 -15.24 22234 2330 -19.93 1706 -1472 -10598
Telem W int 103 150 253 363 453 541 608 1064 £269 1774 2231 2661 2481 2373 2207 1446
Shops  Wiet 1.00 130 228 326 405 473 530 982 €275 933 1766 1914 1443 1151 78BS TV
Hith W int 1.04 141 239 332 411 481 540 943 £0.18 -10.12 -16.16 -16.14 -11.87 -927 -573 -426
LUtils I int 052 083 154 221 279 330 372 64D A7HF O SFFT -11.85 1495 1423 1375 9B1 B84
Other W it 083 115 205 286 377 447 5H04 905 6524 062 -1497 1623 1437 1229 082 700

MoDur W 044 09 151 210 278 329 3482 B9z - - - - - -
Durbl W 078 146 228 307 3891 484 535 9% - - - - - -
Manuf W 0s4 111 193 277 362 433 511 9497 - - - - - -
Enrgy I 080 153 238 323 405 473 553 1014 - - - - - -
HiTec W 113 195 319 443 566 679 778 1486 - - - - - -
Telcm W 063 127 207 287 363 438 49 930 - - - - - -
Shops W 061 118 184 274 3584 424 491 997 - - - - - R
Hith W 0es 128 206 286 367 440 510 914 - - - - - -
Utils W 03 082 137 183 245 290 340 587 - - - - - -
Other I 053 105 178 255 330 393 463 839 - - - - B -




Table 6: Multi-Period MSFEs of Volatility Forecasts — Industries Portfolios

(Continuation)
Horizon Horizon
1 5 10 15 20 25 30 60 1 5 10 15 20 25 30 60
Panel C: West test p values Panel D: GW test p values
Industry Method

MNaDur Wi 047 009 014 013 040 023 024 0325 017 007 026 024 024 016 025 03
Durbl Wi 024 008 047 021 030 024 023 048 ns4 0O 002 009 o003 018 D14 038
Manuf W 023 01% 029 037 046 045 043 033 076 001 o004 002 001 001 001 009
Enrgy Wi 001 o011 020 024 022 013 018 0B 002 o002 007 003 024 035 D41 0B2
HiTec Ve 015 021 026 032 038 036 027 017 045 000 001 004 006 008 D10 013
Telem Wi 000 013 028 032 036 031 02 048 0oo oos oo4 00 0413 098 014 006
Shops Wi 014 048 045 032 011 011 022 033 0ss 003 000 000 000 000 000 015
Hith W 023 020 024 038 041 04 044 048 07s 000 003 005 002 008 003 010
Ltils Wi 0oo 00 o014 013 011 003 009 010 001 017 030 042 045 042 D40 045
Other Ve 046 015 020 025 02 020 019 023 077 000 002 009 013 0413 D18 019
MaDur Vo 047 000 000 000 000 000 000 000 017 000 000 000 000 000 000 000
Durhbl Vo 024 000 000 000 000 000 000 000 017 000 000 000 000 000 000 000
Manuf Vo 023 000 000 000 000 000 000 000 07 000 000 000 000 000 000 000
Enrgy Vo 001 000 o000 000 000 000 000 000 00z 000 o000 000 o000 000 000 000
HiTec Vo 01s 000 000 000 000 000 000 000 045 000 0DO0D 000 000 000 000 000
Telem Vo 0oo o000 o002 000 000 000 000 000 000 o000 oo0o 000 000 000 000 000
Shops Vo 014 000 000 000 000 000 000 000 0ss 000 000 000 000 000 000 000
Hith Vo 023 000 000 000 000 000 000 000 07s 000 000 000 000 000 000 000
Ltils Vo 000 000 o000 000 000 000 000 000 001 000 o000 000 000 000 000 000
Other Vo 046 000 000 000 000 000 000 000 077 000 D00 000 000 000 000 000
MNoDur  Want ooo 001 000 000 000 000 000 0o 0oo 000 000 000 000 000 000 000
Durbl W int 0oo 000 000 000 000 000 000 000 0oo 000 000 000 000 000 000 000
Manuf Vst 0oo 002 000 000 000 000 001 000 ooo 001 000 000 000 000 000 000
Enrgy W int 0oo 000 000 000 000 000 000 000 0oo 000 000 000 000 000 000 000
HiTec W int 0oo 000 000 000 000 000 000 000 0oo 000 000 000 000 000 000 000
Telem  Vint 0oo 000 000 000 000 000 000 000 0oo 000 000 000 000 000 000 000
Shops Wit 0oo 000 000 000 000 000 000 000 0oo 000 000 000 000 000 000 000
Hith W int 0oo 000 000 000 000 000 000 000 0oo 000 000 000 000 000 000 000
Utils W int 0oo 000 000 000 000 000 000 000 0oo 000 000 000 000 000 000 000
Other W int 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000






