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IWhat is Machine Learning?

– What do we want to learn?
– From what do we want to
learn?

– How do we want to learn?
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What is Machine Learning (ML)?

I Automated computer algorithms/methods +
statistical models to “learn” (discover) hidden patterns
from data.

I Usually ML methods are used for prediction (prediction
analytics) but, more recently, they are also being applied to
causal inference.

I ML methods are receiving a lot of attention in
econometrics:

– Model selection in data-rich environments (big data) for
prediction and causal inference;

– Nonlinear models.

– New inferential tools (post model selection).

I When ML methods are statistically sound they are
called Statistical Learning (SL) methods.
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What is Machine Learning (ML)?
ML versus Econometrics

Machine learning:

I Main goal: prediction, classification, pattern recognition,
cluster analysis, etc.

I Not much attention to inference or causal analysis, at least
from a computer science perspective.

I Interpretation is not necessary a key ingredient.

I Statistical learning gives more attention to inference and
causal analysis.

Econometrics:

I Statistical methods for prediction, inference, causal
modeling of economic relationships.

I Inference is a goal and interpretation is important.

I Causal inference is a goal for decision making.
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A great matching:
Machine learning

with
Big Data

with
Econometrics
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What is “Big Data”?

“The sexy job in the next ten years will be statisticians. Because now we really do
have essentially free and ubiquitous data. So the complimentary factor is the
ability to understand that data and extract value from it.”

Hal Varian
Chief Economist, Google

January, 2009

I Large amount of data. We have data on everything!

I Large amount of variables and/or observations.

I A quote from SAS (www.sas.comen us/insightsbig-datawhat-is-big-data.html):

“Big data is a term that describes the large volume of data – both

structured and unstructured – that inundates a business on a

day-to-day basis. But it’s not the amount of data that’s important.

It’s what organizations do with the data that matters. Big data can

be analyzed for insights that lead to better decisions and strategic

business moves.”
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What is “Big Data”?
Structured versus unstructured data

Source: https://solutionsreview.com
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What is “Big Data”?
Structured versus unstructured data

Structured data:

I Highly organized information that uploads nicely into
traditional row database structures, lives in fixed fields,
and is easily detectable via search operations or algorithms.

I Is relatively simple to enter, store, query, and analyze, but
it must be strictly defined in terms of field name and type
(e.g. numeric, date, currency), and as a result is often
restricted by character numbers or specific terminology.

Unstructured data:

I Everything else!

I Unstructured data has internal structure but is not
organized via pre-defined data models or schema.

I Examples: text files, web pages, social media, email, etc...
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What is “Big Data”?
From unstructured to structured data

Example: Economic Policy Uncertainty
Baker, Bloom and Davies (QJE, 2016)
I Index from three types of underlying components:

1. First component quantifies newspaper coverage of
policy-related economic uncertainty.

2. A second component reflects the number of federal tax code
provisions set to expire in future years.

3. The third component uses disagreement among economic
forecasters as a proxy for uncertainty.

I From unstructured to structured data: The first
component is an index of search results from 10 large
newspapers. Normalized index of the volume of news
articles discussing economic policy uncertainty.

USA Today, the Miami Herald, the Chicago Tribune, the
Washington Post, the Los Angeles Times, the Boston Globe, the
San Francisco Chronicle, the Dallas Morning News, the New
York Times, and the Wall Street Journal.
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What is “Big Data”?
From unstructured to structured data

Example: Economic Policy Uncertainty

Source: http://www.policyuncertainty.com and Baker, Bloom and Davis(QJE,

2016).

12



What is “Big Data”?
From unstructured to structured data

Example: News implied VIX (NVIX)
Moreira and Manela (JFE, 2017)

I Text-based measure of uncertainty starting in 1890 using
front-page articles of the Wall Street Journal.

I NVIX peaks during stock market crashes, times of
policy-related uncertainty, world wars, and financial crises.

I In US postwar data, periods when NVIX is high are
followed by periods of above average stock returns, even
after controlling for contemporaneous and forward-looking
measures of stock market volatility.

I NVIX is a key predictor of the equity premium.

I Methodology: ML regression of VIX on regressors based on
text data.

13



What is “Big Data”?
From unstructured to structured data

Example: News implied VIX (NVIX)
Moreira and Manela (JFE, 2017)

I Text-based measure of uncertainty starting in 1890 using
front-page articles of the Wall Street Journal.

I NVIX peaks during stock market crashes, times of
policy-related uncertainty, world wars, and financial crises.

I In US postwar data, periods when NVIX is high are
followed by periods of above average stock returns, even
after controlling for contemporaneous and forward-looking
measures of stock market volatility.

I NVIX is a key predictor of the equity premium.

I Methodology: ML regression of VIX on regressors based on
text data.

13



What is “Big Data”?
From unstructured to structured data

Example: News implied VIX (NVIX)
Moreira and Manela (JFE, 2017)

I Text-based measure of uncertainty starting in 1890 using
front-page articles of the Wall Street Journal.

I NVIX peaks during stock market crashes, times of
policy-related uncertainty, world wars, and financial crises.

I In US postwar data, periods when NVIX is high are
followed by periods of above average stock returns, even
after controlling for contemporaneous and forward-looking
measures of stock market volatility.

I NVIX is a key predictor of the equity premium.

I Methodology: ML regression of VIX on regressors based on
text data.

13



What is “Big Data”?
From unstructured to structured data

Example: News implied VIX (NVIX)
Moreira and Manela (JFE, 2017)

I Text-based measure of uncertainty starting in 1890 using
front-page articles of the Wall Street Journal.

I NVIX peaks during stock market crashes, times of
policy-related uncertainty, world wars, and financial crises.

I In US postwar data, periods when NVIX is high are
followed by periods of above average stock returns, even
after controlling for contemporaneous and forward-looking
measures of stock market volatility.

I NVIX is a key predictor of the equity premium.

I Methodology: ML regression of VIX on regressors based on
text data.

13



What is “Big Data”?
From unstructured to structured data

Example: News implied VIX (NVIX)
Moreira and Manela (JFE, 2017)

I Text-based measure of uncertainty starting in 1890 using
front-page articles of the Wall Street Journal.

I NVIX peaks during stock market crashes, times of
policy-related uncertainty, world wars, and financial crises.

I In US postwar data, periods when NVIX is high are
followed by periods of above average stock returns, even
after controlling for contemporaneous and forward-looking
measures of stock market volatility.

I NVIX is a key predictor of the equity premium.

I Methodology: ML regression of VIX on regressors based on
text data.

13



What is “Big Data”?
From unstructured to structured data

Example: News implied VIX (NVIX)
A. Manela, A. Moreira / Journal of Financial Economics 123 (2017) 137–162 141 

Fig. 1. News implied volatility 1890–2009. Solid line is end-of-month Chicago Board Options Exchange volatility implied by options VIX t . Dots are news 

implied volatility (NVIX), ̂ V IX t = w 0 + w · x t , where x t, i are appearances of n-gram i in month t scaled by total month t n-grams and w is estimated 

with a support vector regression. The train subsample, 1996 to 2009, is used to estimate the dependency between news data and implied volatility. The 

test subsample, 1986–1995, is used for out-of-sample tests of model fit. The predict subsample includes all earlier observations for which options data 

and, hence, VIX are not available. Light-colored triangles indicate a nonparametric bootstrap 95% confidence interval around ̂ V IX using one thousand 

randomizations. These show the sensitivity of the predicted values to randomizations of the train subsample. 

Long-Term Capital Management (LTCM) crisis in August 

1998, the US making clear in September 2002 that an Iraq 

invasion was imminent, the abnormally low VIX from 2005 

to 2007, and the financial crisis in 2008. In-sample fit is 

good, with an R 2 ( train ) = 91% . The tight confidence inter- 

val around ˆ v t suggests that the estimation method is not 

sensitive to randomizations (with replacement) of the train 

subsample. This gives us confidence that the methodology 

uncovers a fairly stable mapping between word frequen- 

cies and VIX, but with such a large feature space, one must 

worry about over-fitting. 

However, as reported in Table 1 , the model’s out-of- 

sample fit over the test subsample is good, with RMSE ( test ) 

of 7.48 percentage points and R 2 ( test ) of 19%. In addition 

to these statistics, we report results from a regression of 

test subsample actual VIX values on news-based values. We 

find that NVIX is a statistically powerful predictor of actual 

VIX. The coefficient on ˆ v t is statistically greater than zero 

( t = 4 . 01 ) and no different from one ( t = −0 . 88 ), which 

supports our use of NVIX to extend VIX to the longer 

sample. 

2.2. NVIX is a reasonable proxy for uncertainty 

NVIX captures well the fears of the average investor 

over this long history. Noteworthy peaks in NVIX include 

Table 1 

Out-of-sample implied volatility (VIX) prediction. 

Reported are out-of-sample model fit statistics using the test subsam- 

ple. Panel A reports variance of the predicted value News Implied Volatil- 

ity (NVIX) as a fraction of actual VIX variance and the root mean square 

error. Panel B reports a univariate Ordinary Least Squares (OLS) regression 

of actual VIX on NVIX. Robust standard errors are in brackets. 

Panel A: Out-of-sample fit 

R 2 ( test ) = 1 − Var 
(
v t − ˆ v t 

)
/Var ( v t ) 18.53 

RMSE ( test ) = 

√ 

1 
T test 

∑ 

t∈ test 

(
v t − ˆ v t 

)2 
7 .48 

Observations 119 

Panel B: Out-of-sample OLS regression v t = a + b ̂ v t + e t , t ∈ test 

a 0 .17 

[4 .37] 

b 0 .82 

[0 .20] 

R 2 19 .46 

the stock market crash of October and November 1929 

and other tremulous periods that we annotate in Fig. 2 . 

Stock market crashes, wars and financial crises seem to 

play an important role in shaping NVIX. Absent, however, 

is the burst of the tech bubble in March 20 0 0. Thus, not 

all market crashes indicate rising concerns about economic 

Source: Moreira and Manela (JFE, 2017).
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What is “Big Data”?
The Vs of “Big Data”

Source: http://www.ibmbigdatahub.com
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What is “Big Data”?
The Vs of “Big Data”

Source: https://www.elderresearch.com/company/blog/42-v-of-big-data
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Machine Learning in Empirical Finance

I Equity premium forecasting
Gu, Kelly and Xiu (2018)

I Cross-section variability of stock returns/factor selection
Bryzgalova (2015); Feng, Giglio and Xiu (2017); Kozak,
Nagel and Santosh (2018), ...

I Covariance matrix forecast and portfolio choice
Callot, Kock and Medeiros (JAE, 2017); Brito, Medeiros
and Ribeiro (2018), ...

I Volatility forecasting
Scharth and Medeiros (IJF, 2009); Fernandes, Medeiros
and Scharth (JBF, 2014), ...

I Credit score, fraud detection, algorithmic trading, ...

I Lots of potential applications due to availability of massive
datasets and new tools.
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What is a Machine Learning Model?

I One of the simplest ML method: linear regression!

yt = β0 + β1x1t + · · ·+ βpxpt + ut, t = 1, . . . , T,

where:

– yt is the output variable (response) for element t, xjt,
j = 1, . . . , p, is the j-th covariate for element t and ut is the error
term;

– p parameters to be estimated (β1, . . . , βp) with T observations.

I What do we learn?

– For sure: The best linear projection of y on the covariates
x = (x1, . . . , xp)

′. Exact solution by Ordinary Least Squares
(OLS).

– Under some assumptions: The E(y|x) or even the causal effects
of changes in x on y

I Linear regression is a GREAT ML method!
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What is a Machine Learning Model?

I However, in some cases, linear regression is not a good
option:

– High dimensions: p > T =⇒ OLS is not feasible.
– Nonlinearities
– Nonlinearities + High dimensions

I The cases above are becoming more and more frequent!
I Example: Moreira and Manela (JFE, 2017)

– y is the VIX and x is a vector with 468,091 entries representing
one- and two-word n-gram frequencies from WJS frontpages:

xit =
appearances of n-gram i in month t

total n-grams in month t

– An n-gram is a contiguous sequence of n items from a given
sample of text or speech.

– The text is decomposed into five categories: War, Financial
Intermediation, Government, Stock Markets, and Natural
Disasters.
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Machine Learning Methods
“All models are wrong but some are useful.”

George Box

I New ML models/methods/algorithms being proposed
every day!

I Old models being rediscovered.
I Which model should we choose?

– Linear versus nonlinear
– Parametric versus non-parametric versus semi-parametric
– Many different variable selection methods
– High risk of cherry picking!!! Data-mining in the bad sense of the

term.

I Names to keep in mind (just a few):

– Variable selection methods: Bagging, Boosting, LASSO,
Adaptive LASSO, Group LASSO, Fused LASSO, SCAD,
Complete Subset Regression, Bayesian methods, factor models.

– Models: linear regression, additive models, regression trees,
random forests, neural networks, deep learning, kernel regression,
series regression, splines.
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Machine Learning Models

I Supervised versus unsupervised learning

I Supervised learning:

– input-output mapping:

yt︸︷︷︸
output

= f︸︷︷︸
mapping

(xt)︸︷︷︸
input (Big?)

+ ut︸︷︷︸
error

– We need to choose the vector of inputs and the mapping
function.

I Unsupervised learning:

– No inputs, just outputs!
– The goal is to find “interesting” patters in data and there are no

desired outputs given a set of inputs.
– Unconditional models, cluster analysis, missing value

imputation, factor construction, etc.
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Model Selection
I Back to the question: How should we choose a model?

– Old forecasting school: choose the model with the best
out-of-sample (OOS) performance.

– Ensamble (forecast combination): use them all.
– Ensamble 2.0: use a subset of models.

I This is still an open question!
I No free-lunch theorem (Wolpert, 1996): there is NO

universal best model.

– The set of assumptions that works in one domain may work
poorly in another.

I Prediction versus causality.

Big Data + Big Models + Big Set of Models

=

BIG PROBLEM!!!!
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Prediction and Inference after Model Selection
I Conducting inference with respect a set of parameters after

model selection is a challenging task.

I Finite sample inference is very complicated and the
asymptotic results are usually not uniform over a wide
class of probability distributions ⇒ asymptotic
distributions depend on the values of the true parameter.

I Difficult to distinguish among smallish coefficients and zero.
I Inferential procedures must be adapted and conducting

standard test ignoring model selection is wrong. Solution
available for cross-section (see Victor Chernozhukov’s
papers). For time-series, solutions available only for specific
settings; see Carvalho, Masini and Medeiros (JoE, in press).

I The lack of uniform convergence is not a problem of Big
Data (high-dimensions) and it is due to the model search
methods that are applied before inference is conducted.

I On the other hand, prediction (forecasting) after model
selection is a much easier task.
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Model Selection in High-Dimensions

I High-Dimensional Models:

– Relatively High-Dimension: Models with many candidate
variables p compared to the sample size n (or T ), but usually
less than n.

– Moderately High-Dimension: Models with candidate
variables proportional to the sample size, usually greater than
the sample size.

– High-Dimension: Models with more candidate variables than
observations, and the number of candidate variables grows
polynomially or exponentially with n (or T ).
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Model Selection in High-Dimensions: Challenges

1. Prediction, oracle properties.
Same prediction performance as the “true” model.

2. Variable (Model) selection.
Select only the correct set of relevant variables.

3. Variable screening.
Select at least the correct set of variables.

4. Inference.
Distribution of the estimates.
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Model Selection in High-Dimensions

I Estimation (model selection) in (linear) high dimension
environments can be tackled in several ways:

1. (Dynamic) Factor Models (DFM) ⇒ dimension reduction.
All variables are relevant but their variability can be summarized
with a very small number of factors.

2. Penalized estimation (regularization)/shrinkage.
Most of the variables are not relevant.

cost = goodness of fit + penalty.

3. Bayesian methods (sort of shrinkage).
4. Bootstrap Aggregation (Bagging) and Boosting (sort of

shrinkage).
5. Complete Subset Regressions (CSR)
6. Support Vector Machines (SVM)

I Nonlinear alternatives:

1. Regression trees and neural networks
2. Shrinkage methods and bagging and boosting as well can be

applied in nonlinear methods.
3. Bayesian methods.
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The Road Map

Lecture 1:

I Linear models with shrinkage

I Applications to covariance matrix forecasting

Lecture 2:

I Nonlinear models

I Applications to equity premium forecasting
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Shrinkage in Linear Models:
Ridge, LASSO, Adaptive LASSO, Elastic

Net
What happens when p >> T in linear regressions?

30



Framework: Linear Regression Model

I We are interested in single-equation linear models

yt = β0 + β′xt + ut

where

– xt = (x1t, . . . , xpt)
′ is a vector of p exogenous variables,

– ut is a zero-mean innovation,
– xt = [xt(S)′,xt(S

c)′]′, xt(S) ∈ Rs is the vector of relevant
variables and xt(S

c) ∈ Rp−s is the vector of irrelevant ones.
β = [β′S ,β

′
Sc ]′.

– p ≡ p(T ) and s ≡ s(T ). T is the sample size.

I Goals:

1. Select the right set of variables: β̂S 6= 0 and β̂Sc = 0 (model
selection).

2. Estimate βS as if the correct set of variables is known to the
econometrician.
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Penalized Least Squares

I A Penalized Least Squares estimator β̂:

β̂(λ) = arg min
β∈B

T∑
t=1

(yt − β′zt)2 +

p∑
j=1

pλ(|βj |),

where

– zt = (1,x′t)
′.

– pλ(|βj |) is a non-negative penalty function indexed by the
regularization parameter λ. (e.g., pλ(|βj |) = λ|βj |2, or
pλ(|βj |) = λ|βj |).

I λ controls the “number of parameters” in the model.

I If λ =∞ no variables enter the model, if λ = 0 it is just
the OLS estimator.

I Key assumption (for some methods): sparsity.
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pλ(|βj |) = λ|βj |).

I λ controls the “number of parameters” in the model.

I If λ =∞ no variables enter the model, if λ = 0 it is just
the OLS estimator.

I Key assumption (for some methods): sparsity.
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Sparse Models

I We say a model is sparse if the true parameter vector β is
sparse, i.e., most elements in β are either zero or
negligibly small (compared to the sample size).

I In some cases (for example, linear models for the
conditional mean) it is equivalent to say that the number
of relevant variables is small compared to the number of
candidate variables.

I Sparse modeling has been successfully used to deal with
high-dimensional models and is a crucial condition for
identifiability.
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The Ridge Regression

I The Ridge estimator is defined as follows:

β̂Ridge(λ) = arg min
β∈B

T∑
t=1

(yt − β′zt)2 + λ

p∑
j=0

β2
j

I “Shrinks” towards zero parameters associated with
redundant predictors (not exactly).

I λ is a shrinkage parameter to be chosen;

I The Ridge solution is not sparse.

I The solution β̂Ridge is easy to find as the problem remains
quadratic in β:

β̂Ridge (λ) =
(
Z ′Z + λI

)−1
Z ′y.

I Good for prediction but not for variable selection.

34



The Ridge Regression

I The Ridge estimator is defined as follows:

β̂Ridge(λ) = arg min
β∈B

T∑
t=1

(yt − β′zt)2 + λ

p∑
j=0

β2
j

I “Shrinks” towards zero parameters associated with
redundant predictors (not exactly).

I λ is a shrinkage parameter to be chosen;

I The Ridge solution is not sparse.

I The solution β̂Ridge is easy to find as the problem remains
quadratic in β:

β̂Ridge (λ) =
(
Z ′Z + λI

)−1
Z ′y.

I Good for prediction but not for variable selection.

34



The Ridge Regression

I The Ridge estimator is defined as follows:

β̂Ridge(λ) = arg min
β∈B

T∑
t=1

(yt − β′zt)2 + λ

p∑
j=0

β2
j

I “Shrinks” towards zero parameters associated with
redundant predictors (not exactly).

I λ is a shrinkage parameter to be chosen;

I The Ridge solution is not sparse.

I The solution β̂Ridge is easy to find as the problem remains
quadratic in β:

β̂Ridge (λ) =
(
Z ′Z + λI

)−1
Z ′y.

I Good for prediction but not for variable selection.

34



The Ridge Regression

I The Ridge estimator is defined as follows:

β̂Ridge(λ) = arg min
β∈B

T∑
t=1

(yt − β′zt)2 + λ

p∑
j=0

β2
j

I “Shrinks” towards zero parameters associated with
redundant predictors (not exactly).

I λ is a shrinkage parameter to be chosen;

I The Ridge solution is not sparse.

I The solution β̂Ridge is easy to find as the problem remains
quadratic in β:

β̂Ridge (λ) =
(
Z ′Z + λI

)−1
Z ′y.

I Good for prediction but not for variable selection.

34



The Ridge Regression

I The Ridge estimator is defined as follows:

β̂Ridge(λ) = arg min
β∈B

T∑
t=1

(yt − β′zt)2 + λ

p∑
j=0

β2
j

I “Shrinks” towards zero parameters associated with
redundant predictors (not exactly).

I λ is a shrinkage parameter to be chosen;

I The Ridge solution is not sparse.

I The solution β̂Ridge is easy to find as the problem remains
quadratic in β:

β̂Ridge (λ) =
(
Z ′Z + λI

)−1
Z ′y.

I Good for prediction but not for variable selection.

34



The Ridge Regression

I The Ridge estimator is defined as follows:

β̂Ridge(λ) = arg min
β∈B

T∑
t=1

(yt − β′zt)2 + λ

p∑
j=0

β2
j

I “Shrinks” towards zero parameters associated with
redundant predictors (not exactly).

I λ is a shrinkage parameter to be chosen;

I The Ridge solution is not sparse.

I The solution β̂Ridge is easy to find as the problem remains
quadratic in β:

β̂Ridge (λ) =
(
Z ′Z + λI

)−1
Z ′y.

I Good for prediction but not for variable selection.

34



The LASSO - Tibshirani (JRRS B, 1996)

I Least Absolute Shrinkage and Selection Operator
(LASSO):

β̂LASSO(λ) = arg min
β∈B

T∑
t=1

(yt − β′zt)2 + λ

p∑
j=1

|βj |

I “Shrinks” to zero parameters associated with redundant
predictors.

I The regularization path can be efficiently estimated.

I Can handle (many) more variables than observations
(p >> T ).

I Under some conditions can select the correct subset of
relevant variables.
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LASSO versus Ridge

7

Picture of Lasso and Ridge regression

β^ β^2
. .β

1

β2

β1
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LASSO and Model Selection
Consistency

Estimation Consistency

β̂ − β0 p−→ 0, asT −→∞.

Model Selection Consistency

P

({
i : β̂ 6= 0

}
=
{
i : β0 6= 0

})
−→ 1, asT −→∞.

Sign Consistency

P
(
β̂

s
= β0

)
−→ 1 asT −→∞

where
β̂

s
= β0 ⇐⇒ sign

(
β̂
)

= sign
(
β0
)
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LASSO and Model Selection
The sign Function

The sign function is defined as

sign(x) =


1 ifx > 0

0 ifx = 0

−1 ifx < 0
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Sign Consistency
Definitions

Strong Sign Consistency

The LASSO estimator is strongly sign consistent if
∃λT = f(T ) such that

lim
T→∞

P
(
β̂(λT )

s
= β0

)
= 1

General Sign Consistency

The LASSO estimator is general sign consistent if

lim
T→∞

P
(
∃λ, β̂(λ)

s
= β0

)
= 1

I Strong sign consistency implies general sign consistency
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LASSO and Model Selection
Sign Consistency

General Sign Consistency versus Strong Sign Consistency

I Strong Sign Consistency implies one can use a
pre-selected λ to achieve consistent model selection via the
LASSO.

I General Sign Consistency means for a random
realization there exists a correct amount of regularization
that selects the true model.
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LASSO and Model Selection
Irrepresentable Condition

Strong Irrepresentable Condition

∃η > 0 such that ∣∣∣∣Σ̂ScSΣ̂
−1

SSsign
(
β0
S

)∣∣∣∣ ≤ 1− η

Weak Irrepresentable Condition∣∣∣∣Σ̂ScSΣ̂
−1

SSsign
(
β0
S

)∣∣∣∣ < 1

I 1 ∈ R(p−s) is a vector of ones, and the inequality holds
element-wise.

I The Irrepresentable Condition is a key condition for model
selection consistency of the LASSO!

I This is a too strong condition!
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The Adaptive LASSO - Zou (JASA, 2006)

I The Adaptive LASSO (adaLASSO) estimator is given by

β̂adaLASSO = arg min
β∈B

T∑
t=1

(yt − β′zt)2 + λ

p∑
j=1

wj |βj |,

where w1, . . . , wp are non-negative pre-defined weights.

I Usually wj = |β̃j |−τ , for τ > 0, where β̃j is an initial
estimator (e.g., LASSO).

I Provide consistent estimates for the non-zero parameters;

I Has the oracle property under some conditions.

I Theoretical results in general time-series framework:
Medeiros and Mendes (JoE, 2016)
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The Elastic Net Estimator

I The Näıve Elastic Net estimator is defined as

β̂(näıve) = arg min
β∈∈Rp

T∑
t=1

(yt − β′zt)2 + λ2

p∑
j=1

β2
i + λ1

p∑
j=1

|βi|.

I The Elastic Net estimator is given by

β̂ = (1 + λ2)β̂(näıve).

I The näıve EL-Net estimator selects the same model as the
EL-Net version.
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The Elastic Net Estimator
The Geometry of the Elastic Net

ElasticNet Hui Zou, Stanford University 10

Geometry of the elastic net

β1

β2

Ridge
Lasso
Elastic Net

2-dimensional illustration α = 0.5

The elastic net penalty

J(β) = α‖β‖2+(1−α)‖β‖1

(with α = λ2

λ2+λ1
)

min
β

‖y−Xβ‖2 s.t. J(β) ≤ t.

• Singularities at the

vertexes (necessary for

sparsity)

• Strict convex edges.

The strength of con-

vexity varies with α

(grouping)
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To Learn More about Shrinkage
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Empirical Example:
Forecasting Large Dimensional Realized

Covariance Matrices

Callot, Laurent, Anders B. Kock and Marcelo C. Medeiros (2017). Modeling and

Forecasting Large Realized Covariance Matrices and Portfolio Choice. Journal

of Applied Econometrics, 32, 140-158.
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Dataset

I 30 stocks from the Dow Jones index from 2006 to 2012
with a total of 1474 daily observations.

I Daily realized covariances are constructed from 5 minutes
returns by the method of Lunde, Shephard, Sheppard
(2013).

I The stocks can be classified in 8 broad categories.

Basic Technology Consumer Consumer
Materials Cyclical Non-cyclical
2 4 3 7

Energy Financial Industrial Communication
2 3 5 4
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Results: Sectors

Variance Equations

L
ag

ge
d

va
ri

a
n

ce

Basic Materials 0.75 0.40 0.14 0.52 0.23 0.35 0.57 0.39
Consumer, Non-cyclical 0.17 0.48 0.37 0.37 0.24 0.20 0.26 0.32
Financial 0.00 0.42 0.99 0.24 0.64 0.20 0.12 0.48
Communications 0.32 0.23 0.10 0.57 0.19 0.14 0.27 0.19
Industrial 0.00 0.19 0.28 0.16 1.00 0.08 0.07 0.18
Energy 0.58 0.45 0.46 0.33 0.02 1.00 0.38 0.55
Technology 0.34 0.19 0.09 0.24 0.02 0.05 0.63 0.12
Consumer, Cyclical 0.34 0.54 0.35 0.29 0.30 0.20 0.31 0.70

L
ag

ge
d

co
va

ri
an

ce

Basic Materials 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.01
Consumer, Non-cyclical 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
Financial 0.00 0.01 0.02 0.00 0.00 0.00 0.01 0.00
Communications 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Industrial 0.02 0.01 0.01 0.02 0.03 0.00 0.03 0.02
Energy 0.01 0.03 0.01 0.03 0.01 0.01 0.02 0.03
Technology 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00
Consumer, Cyclical 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Results: Sectors

Covariance Equations

L
ag

ge
d

va
ri

a
n

ce

Basic Materials 0.81 0.27 0.10 0.24 0.24 0.93 0.26 0.29
Consumer, Non-cyclical 0.48 0.71 0.56 0.32 0.28 0.35 0.36 0.41
Financial 0.13 0.25 0.64 0.16 0.06 0.32 0.15 0.17
Communications 0.62 0.57 0.54 0.65 0.51 0.70 0.61 0.58
Industrial 0.13 0.13 0.18 0.18 0.34 0.08 0.10 0.07
Energy 0.12 0.08 0.21 0.06 0.03 0.56 0.11 0.12
Technology 0.74 0.49 0.51 0.52 0.43 0.34 0.82 0.53
Consumer, Cyclical 0.14 0.52 0.55 0.37 0.37 0.51 0.29 0.90

L
ag

ge
d

co
va

ri
an

ce

Basic Materials 0.09 0.12 0.12 0.11 0.09 0.12 0.09 0.11
Consumer, Non-cyclical 0.04 0.05 0.05 0.04 0.03 0.05 0.04 0.03
Financial 0.11 0.14 0.18 0.11 0.07 0.10 0.10 0.10
Communications 0.07 0.09 0.09 0.11 0.04 0.10 0.08 0.08
Industrial 0.17 0.14 0.15 0.14 0.24 0.11 0.14 0.15
Energy 0.16 0.16 0.16 0.15 0.10 0.24 0.15 0.16
Technology 0.08 0.07 0.09 0.08 0.05 0.07 0.08 0.06
Consumer, Cyclical 0.05 0.05 0.05 0.06 0.04 0.08 0.05 0.06
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Results: Average Equation Size
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I Diagonal equations more stable than off-diagonal ones.

I Diagonal equations are smaller.

I Flash Crash: May 6th 2010.
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Results: Parameter Stability

Fraction of parameters that change from being zero to non-zero or vice

versa in two consecutive periods
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Results: Forecast Error and Penalty Parameter

`2-norm of the 1-step ahead forecast error (left panel) and average penalty

parameter (right panel) selected by BIC.
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Results: Selection Frequency – VAR(1) LASSO
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Results: Selection – VAR(1) LASSO
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Results: Common Factor – VAR (1) LASSO

Lagged variance of the S&P selected in the variance equations of the Dow

Jones stocks (left panel) and lagged variances of the Dow Jones stocks

selected in the equation of the variance of the S&P 500 (right panel).

S&P selected in variance equations. Variances selected in S&P equation.
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Forecasting Results

AMedAFE AMaxAFE `2
Model h A D O A D O A D O

No-Change 1 0.33 0.57 0.33 3.53 3.53 1.47 11.22 5.98 9.22
Censored 5 0.46 0.79 0.45 4.51 4.51 1.91 15.02 7.89 12.41

20 0.58 0.98 0.57 5.12 5.12 2.22 18.05 9.25 15.17

DCC 1 0.56 0.95 0.55 8.40 8.36 4.28 22.37 12.40 18.17

EWMA(λ = 0.96) 1 0.88 1.08 0.88 8.07 8.03 4.55 28.89 12.55 25.78

VAR(1), Lasso 1 0.37 0.61 0.37 3.34 3.32 1.72 11.98 5.93 10.21
5 0.44 0.73 0.43 3.77 3.64 2.25 14.25 6.82 12.27
20 0.69 0.96 0.68 4.37 4.03 3.16 19.98 8.11 18.07

VAR(1), Lasso 1 0.34 0.55 0.33 3.08 3.04 1.76 11.26 5.4 9.72
Post Lasso OLS 5 0.45 0.73 0.44 3.8 3.68 2.23 14.39 6.87 12.36

20 0.61 0.93 0.6 4.34 4.09 2.94 18.55 8.06 16.43

VAR(1), adaptive Lasso 1 0.37 0.62 0.37 3.46 3.44 1.81 12.21 6.07 10.4
Initial estimator: Lasso 5 0.44 0.74 0.44 3.88 3.78 2.32 14.49 6.93 12.52

20 0.62 0.98 0.61 4.45 4.18 3.13 19.44 8.38 17.3

VAR(1), Lasso 1 0.35 0.58 0.35 3.25 3.25 1.42 11.31 5.76 9.48
Log-matrix transform 5 0.42 0.73 0.41 3.58 3.58 1.62 13.26 6.65 11.2

20 0.48 0.94 0.47 4.02 4.02 1.81 15.27 8.04 12.64

VAR(1), Lasso 1 0.37 0.61 0.37 3.34 3.32 1.77 12.44 5.93 10.22
Including S&P 500 5 0.44 0.74 0.43 3.79 3.65 2.33 14.77 6.84 12.31

20 0.68 0.95 0.67 4.37 4.02 3.16 20.46 8.08 17.96
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Forecasting Results

AMedAFE AMaxAFE `2
Model h A D O A D O A D O

No-Change 1 0.33 0.57 0.33 3.53 3.53 1.47 11.22 5.98 9.22
Censored 5 0.46 0.79 0.45 4.51 4.51 1.91 15.02 7.89 12.41

20 0.58 0.98 0.57 5.12 5.12 2.22 18.05 9.25 15.17

DCC 1 0.56 0.95 0.55 8.40 8.36 4.28 22.37 12.40 18.17

EWMA(λ = 0.96) 1 0.88 1.08 0.88 8.07 8.03 4.55 28.89 12.55 25.78

VAR(20), Lasso 1 0.35 0.57 0.35 3.19 3.16 1.62 11.35 5.59 9.66
5 0.41 0.65 0.4 3.54 3.46 2.01 13.09 6.28 11.25
20 0.54 0.84 0.53 4.03 3.87 2.56 16.29 7.44 14.3

VAR(20), Lasso 1 0.33 0.52 0.32 3.01 2.92 1.76 10.88 5.09 9.44
Post Lasso OLS 5 0.42 0.66 0.41 3.56 3.48 2.1 13.43 6.31 11.65

20 0.49 0.79 0.47 4.02 3.9 2.38 15.29 7.27 13.25

VAR(20), adaptive Lasso 1 0.36 0.59 0.35 3.45 3.44 1.61 11.76 5.98 9.89
Initial estimator: Lasso 5 0.43 0.69 0.42 3.75 3.72 2.01 13.62 6.66 11.65

20 0.58 0.93 0.57 4.16 4.04 2.68 17.49 8.03 15.33

VAR(20), Lasso 1 0.36 0.57 0.35 3.16 3.16 1.39 11.22 5.59 9.49
Log-matrix transform 5 0.4 0.66 0.39 3.42 3.42 1.54 12.53 6.22 10.63

20 0.46 0.84 0.45 3.81 3.8 1.73 14.37 7.36 12.06

VAR(20), Lasso 1 0.35 0.57 0.35 3.19 3.16 1.64 11.78 5.59 9.67
Including S&P 500 5 0.41 0.65 0.4 3.54 3.46 2.01 13.55 6.28 11.26

20 0.54 0.84 0.53 4 3.85 2.54 16.83 7.4 14.38
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Portfolio Results

The investor’s problem at t = t0, . . . , T − 1 is to select a vector of
weights for period t+ 1 based solely on information up to time t:

ω̂t+1 = arg min
ωt+1

ω′
t+1Σ̂t+1ωt+1

s.t. ω′
t+1µ̂t+1 = µtarget

n∑
i=1

ωit+1 = 1

n∑
i=1

|ωit+1|I(ωit < 0) ≤ 0.30

|ωit+1| ≤ 0.20,

where ωt+1 is an n× 1 vector of portfolio weights, µtarget is the target

expected rate of return from t to t+ 1 and I(·) is an indicator

function.
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Portfolio Results

Model VAR(1) VAR(20) No-Change DCC EWMA

Estimator: Lasso Post Lasso adaLasso Lasso Lasso Post Lasso adaLasso Lasso
Statistic OLS Init: Lasso (Log Mat) OLS Init: Lasso (Log Mat) Censored

Average weight 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Max weight 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
Min weight -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20
Average leverage 0.28 0.28 0.28 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29
Proportion of leverage 0.22 0.23 0.22 0.27 0.22 0.22 0.22 0.28 0.24 0.24 0.23
Average turnover 0.02 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.03 0.01 0.01

Average return (×10−4) 2.58 2.72 3.58 5.89 2.85 2.96 2.64 6.27 1.99 0.40 0.14
Accumulated return 10.07 10.71 15.16 27.77 11.45 11.93 10.34 30.02 7.13 -0.48 -1.60
Standard deviation (×102) 0.97 0.98 0.98 1.00 0.97 0.99 0.97 0.99 0.97 1.00 0.99
Sharpe ratio (×102) 2.66 2.77 3.65 5.87 2.95 3.01 2.70 6.29 2.04 0.40 0.14
Diversification ratio 1.46 1.46 1.47 1.43 1.46 1.46 1.44 1.43 1.48 1.43 1.43

Economic Value γ = 1
No-Change (censored) 1.50 1.83 4.08 10.25 2.21 2.45 1.64 11.32 – – –
DCC 5.73 6.07 8.41 14.84 6.46 6.72 5.87 15.95 – – –
EWMA 6.40 6.74 9.09 15.56 7.13 7.39 6.54 16.68 – – –

Economic Value γ = 5
No-Change (censored) 1.54 1.77 4.00 9.92 2.27 2.33 1.64 11.06 – – –
DCC 6.13 6.37 8.71 14.89 6.90 6.96 6.24 16.08 – – –
EWMA 6.68 6.92 9.27 15.48 7.45 7.51 6.79 16.68 – – –

Economic Value γ = 10
No-Change (censored) 1.58 1.68 3.91 9.50 2.35 2.17 1.63 10.74 – – –
DCC 6.64 6.75 9.08 14.95 7.45 7.26 6.69 16.25 – – –
EWMA 7.04 7.15 9.49 15.38 7.85 7.66 7.09 16.69 – – –
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Empirical Example:
Forecasting Even Larger Realized

Covariance Matrices

Brito, Diego, Marcelo C. Medeiros and Ruy M. Ribeiro (2018). Forecasting Large

Realized Covariance Matrices: The Benefits of Factor Models and Shrinkage.

Working paper available at SSRN id 3163668.
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The Setup
Curse of Dimensionality

I RC matrices are highly persistent over time, which suggests
an AR model of large order p (usually p > 20).

I Σt: n× n realized covariance matrix.

I yt = vech(Σt), such that

yt = ω +

p∑
i=1

Φiyt−i + εt, t = 1, . . . , T,

where:
– Φi, i = 1, . . . , p are the q × q matrices with q = n(n+ 1)/2;
– ω is a q × 1 vector of intercepts.

I n(n+ 1)/2 equations with a total of n(n+ 1)(p+ 1)/2
parameters.
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The Setup
Factor Structure

I Excess return on any asset i, ri,t:

rei,t = βi1,tf1,t + · · ·+ βiK,tfK,t + εi,t = β′i,tf t + εi,t,

ret = B′tf t + εt,

where:
– f1,t, · · · , fK,t are the excess returns of K factors;
– βik,t, k = 1, . . . ,K, are factor loadings for asset i;
– εi,t is the idiosyncratic error term.

I Factors are linear combinations of returns: long-short stock
portfolios where stocks are sorted on firm characteristics:

f t = W tr
e
t W t is known

I Loadings are time-varying and are given as:

Bt = (Σf,t)
−1W ′

tΣt
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The Setup
Covariance Decomposition

I Under the assumption E(εt|f t) = 0, we have

Σt = cov(B′tf t) + cov(εt) = B′tΣf,tBt + Σε,t.

I By linearity:

Σf,t = cov(f t) = cov(W ′
trt) = W ′

tΣtWt.

I Therefore,

Σ̂t+1|t = B̂
′
t+1|tΣ̂f,t+1|tB̂t+1|t + Σ̂ε,t+1|t.
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Forecasting Methodology: Σ̂t+1|t = B̂
′
t+1|tΣ̂f,t+1|tB̂t+1|t + Σ̂ε,t+1|t

Realized Factor Covariance Matrices

I Vector HAR model for yf,t = vech[logM(Σf,t)]:

yf,t = ω + Φdayy
day
f,t−1 + Φweeky

week
f,t−1 + Φmonthy

month
f,t−1 + εt,

where:
– yday

f,t = vech(Σday
f,t); y

week
f,t = vech(Σweek

f,t ); ymonth
f,t = vech(Σmonth

f,t );

– Σday
f,t = logM(Σf,t);

– Σweek
f,t = 1

5
[logM(Σf,t) + · · ·+ logM(Σf,t−4)]; and

– Σmonth
f,t = 1

22
[logM(Σf,t) + · · ·+ logM(Σf,t−21)].

I Estimation via LASSO/adaLASSO

I Penalty parameter is set with the BIC

I The inverse LASSO estimates (in absolute value) are used
as weights for the adaLASSO
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Forecasting Methodology: Σ̂t+1|t = B̂
′
t+1|tΣ̂f,t+1|tB̂t+1|t + Σ̂ε,t+1|t

Loadings
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Forecasting Methodology: Σ̂t+1|t = B̂
′
t+1|tΣ̂f,t+1|tB̂t+1|t + Σ̂ε,t+1|t

Loadings

I Loading dynamics modeled as a HAR model:

βk,i,t = ω + φdayβ
day
k,i,t−1 + φweekβ

week
k,i,t−1 + φmonthβ

month
k,i,t−1 + εk,i,t,

where βk,i,t is the (k, i) element of Bt, i.e., the loading of
stock i on factor k at date t.

I Coefficients estimated by OLS.

I No need for LASSO here.
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Forecasting Methodology: Σ̂t+1|t = B̂
′
t+1|tΣ̂f,t+1|tB̂t+1|t + Σ̂ε,t+1|t

Residual Covariance

I Forecasting Σε,t is still subject to the curse of
dimensionality

I We assume that Σε,t is block-diagonal where blocks are
defined by industry classification.

I Furthermore, we assume that the dynamics of each block
depends only on the elements of the same block at t− 1

I Finally, past covariances are not used as regressors
(Callot, Kock, and Medeiros, 2017)
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Forecasting Methodology: Σ̂t+1|t = B̂
′
t+1|tΣ̂f,t+1|tB̂t+1|t + Σ̂ε,t+1|t

Residual Covariance

I S sectors:

Σε,t =


Σ1
ε,t

. . .

ΣS
ε,t

 .

I The dynamics for ysε,t = vech[logM(Σs
ε,t)],s ∈ {1, 2, . . . , S}:

ysε,t = ωsε + ΦsΛs
ε,t−1 + usε,t,

where Λs
ε,t−1 = diag[logM(Σs

ε,t−1)].

I LASSO/adaLASSO estimation equation by equation.

68



Data
Realized Covariance Matrices

I The data consists of daily realized covariance matrices of
returns for constituents of the S&P 500 index

I We consider companies that remained in the index and had
balance sheet data for the full sample period, totaling 430
stocks

I These matrices were constructed from 5-minute returns by
composite realized kernel (Lunde et al, 2016 JBES)

I Sample period: January 2006 - December 2011 (1495 days).
Estimation windows with 1,000 observations.

I Data cleaning: merges and splits.
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Data
Factors and Sector Classification

I 6 factors + market are considered: Size (SMB), Value
(HML), Gross Profitability, Investment, Asset Growth and
Accruals (CRSP/Compustat database)

I 4 different combinations: 1F(Market), 3F(1F + Size
and Value), 5F(3F + Gross Profitability and Investment),
and 7F(5F + Asset Growth and Accruals)

I Standard Industrial Classification (SIC): 10 sectors
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Data
Number of Stocks per Sector

Sector Number of Stocks

Consumer Non-Durables 31
Consumer Durables 8
Manufacturing 65
Oil, Gas, and Coal Extraction 32
Business Equipment 61
Telecommunications 10
Wholesale and Retail 45
Health Care, Medical Equipments, and Drugs 26
Utilities 36
Others 116
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Results
Covariance Structure

I The blue dots represent the correlations larger than 0.15 in absolute value in
at least 1/3 of the sample days.

I Red squares represent the groups defined by SIC.
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Results
Factor Decomposition and Residual Covariance
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Forecasting Results
Forecast Precision for Factor Covariance Matrices

I `2 represents the average `2-forecast error over the 473
out-of-sample days, that is,

average `2-forecast error =
1

T2 − T1 + 1

T=T2∑
T=T1

||ε̂T+1||.

I `2/`2,RW represents the ratio of the `2-forecast error for
other methods to the random walk value.

`2 `2 / `2,RW
Model Random Walk FHAR FHAR, Log-matrix

1F 0.40 0.96 (0.96) 0.92 (0.92)
3F 0.44 0.98 (0.97) 0.90 (0.90)
5F 0.51 0.95 (0.95) 0.89 (0.89)
7F 0.62 0.99 (1.04) 0.86 (0.87)
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Forecasting Results
Forecast Precision for Complete Covariance Matrices

Model (Benchmarks) `2/`2,RW VHAR (Log-matrix) `2/`2,RW
RW 1.00 1F, LASSO 0.86
EWMA (Returns) 6.93 3F, LASSO 0.85
BEKK-NL 1.71 5F, LASSO 0.85
DCC-NL 1.71 7F, LASSO 0.85
Block 1F 0.97 1F, adaLASSO 0.86
Block 3F 0.97 3F, adaLASSO 0.85
Block 5F 0.97 5F, adaLASSO 0.85
Block 7F 0.97 7F, adaLASSO 0.85

Random Walk (RW) `2,RW 341.57
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Portfolio Results
Statistics for Daily Portfolios - Global Minimum Variance

I Consider the problem of an investor at time
t = t0, . . . , T − 1 who wishes to construct a minimum
variance portfolio to be held in time t+ 1.

I The optimization problem consists of choosing a vector of
weights ŵt+1:

ŵt+1 = arg min
wt+1

w′t+1Σ̂t+1wt+1

subject to w′t+11 = 1.
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Portfolio Results
Statistics for Daily Portfolios - Global Minimum Variance

RW Block 1F Block 3F Block 5F Block 7F EWMA BEKK-NL DCC - NL

Standard Deviation (%) 12.07 8.21 8.29 8.25 8.25 14.62 9.41 10.65

Lower Partial SD (%) 12.82 8.79 8.94 8.73 8.83 14.90 9.63 11.31

Avg. Gross Leverage 5.94 3.08 3.14 3.14 3.19 12.55 5.09 4.11

Prop. of Leverage (%) 44.30 44.40 44.22 44.10 44.11 49.17 45.11 51.73

Avg. Turnover (%) 1.80 0.75 0.78 0.78 0.80 0.27 0.11 0.21

Avg. Excess Return (%) 14.20 12.72 14.46 15.37 14.95 3.42 17.98 17.46

Cumulative Return (%) 29.04 26.42 30.59 32.86 31.82 4.74 39.27 37.58

Sharpe Ratio 1.18 1.55 1.74 1.86 1.81 0.23 1.91 1.64

1 Factor 3 Factors 5 Factors 7 Factors
VHAR VHAR VHAR VHAR

(Log matrix) (Log matrix) (Log matrix) (Log matrix)
LASSO aLASSO LASSO aLASSO LASSO aLASSO LASSO aLASSO

Standard Deviation (%) 8.46 8.42 8.37 8.32 8.29 8.25 8.12 8.09

Lower Partial SD (%) 8.86 8.81 8.78 8.68 8.57 8.53 8.52 8.51

Avg. Gross Leverage 2.66 2.67 2.80 2.80 2.82 2.82 2.93 2.93

Prop. of Leverage (%) 45.89 46.01 44.88 45.03 44.89 45.12 45.26 45.50

Avg. Turnover (%) 0.20 0.22 0.20 0.22 0.19 0.21 0.20 0.22

Avg. Excess Return (%) 15.24 15.18 17.69 17.45 18.93 18.61 18.09 17.85

Cumulative Return (%) 32.49 32.35 38.74 38.13 42.01 41.19 39.85 39.21

Sharpe Ratio 1.80 1.80 2.11 2.10 2.28 2.26 2.23 2.21
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Portfolio Results
Statistics for Daily Portfolios - Restricted Minimum Variance

I Maximum leverage equal to 30% (in some sense, consistent
with a 130-30 fund concept in the mutual fund industry).

I Maximum weights on individual stocks: 20% (in absolute
value).

I The problem for an investor at time t = t0, . . . , T − 1 is
then given by

ŵt+1 = arg min
wt+1

w′t+1Σ̂t+1wt+1

subject to w′t+11 = 1,

N∑
i=1

|wit+1|I(wit < 0) ≤ 0.30 and |wit+1| ≤ 0.20.
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Portfolio Results
Statistics for Daily Portfolios - Restricted Minimum Variance

RW Block 1F Block 3F Block 5F Block 7F EWMA BEKK-NL DCC - NL

Standard Deviation (%) 13.29 13.34 13.20 13.17 13.25 15.28 15.49 14.72

Lower Partial SD (%) 14.13 13.91 13.66 13.35 13.68 16.47 16.24 15.28

Avg. Gross Leverage 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60

Prop. of Leverage (%) 1.91 3.11 3.08 3.06 2.93 0.71 0.85 1.41

Avg. Turnover (%) 0.43 0.40 0.42 0.41 0.42 0.09 0.10 0.11

Avg. Excess Return (%) 16.72 18.23 19.01 22.42 21.22 13.68 14.24 16.91

Cumulative Return (%) 34.88 38.74 40.83 50.14 46.79 26.74 27.99 34.86

Sharpe Ratio 1.26 1.37 1.44 1.70 1.60 0.90 0.92 1.15

1 Factor 3 Factors 5 Factors 7 Factors
VHAR VHAR VHAR VHAR

(Log matrix) (Log matrix) (Log matrix) (Log matrix)
LASSO aLASSO LASSO aLASSO LASSO aLASSO LASSO aLASSO

Standard Deviation (%) 13.20 13.37 12.81 12.86 12.57 12.83 12.63 12.75

Lower Partial SD (%) 13.29 13.64 12.60 12.54 12.54 12.75 12.52 12.62

Avg. Gross Leverage 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60

Prop. of Leverage (%) 2.46 2.44 2.37 2.38 2.43 2.41 2.27 2.25

Avg. Turnover (%) 0.22 0.23 0.24 0.24 0.23 0.24 0.22 0.23

Avg. Excess Return (%) 16.07 19.89 19.72 21.04 20.56 18.93 20.74 19.19

Cumulative Return (%) 33.30 43.13 42.88 46.43 45.22 40.76 45.67 41.48

Sharpe Ratio 1.22 1.49 1.54 1.64 1.64 1.48 1.64 1.51
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Portfolio Results
Statistics for Daily Portfolios - Restricted Minimum Variance (Long Only)

I No short-selling.

I The problem for an investor at time t = t0, . . . , T − 1 is
then given by

ŵt+1 = arg min
wt+1

w′t+1Σ̂t+1wt+1

subject to w′t+11 = 1,

0 ≤ wit+1 ≤ 0.20.
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Portfolio Results
Statistics for Daily Portfolios - Restricted Minimum Variance (Long Only)

RW Block 1F Block 3F Block 5F Block 7F EWMA BEKK-NL DCC - NL

Standard Deviation (%) 17.10 17.06 16.96 16.85 16.88 17.74 17.92 17.78

Lower Partial SD (%) 17.56 17.83 17.63 17.49 17.58 18.94 19.16 19.13

Avg. Gross Leverage 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Prop. of Leverage (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Avg. Turnover (%) 0.17 0.16 0.16 0.16 0.16 0.03 0.03 0.04

Avg. Excess Return (%) 14.29 15.86 16.18 14.98 15.06 20.22 15.85 16.28

Cumulative Return (%) 27.49 31.30 32.15 29.25 29.44 42.18 30.91 32.04

Sharpe Ratio 0.84 0.93 0.95 0.89 0.89 1.14 0.88 0.92

1 Factor 3 Factors 5 Factors 7 Factors
VHAR VHAR VHAR VHAR

(Log matrix) (Log matrix) (Log matrix) (Log matrix)
LASSO aLASSO LASSO aLASSO LASSO aLASSO LASSO aLASSO

Standard Deviation (%) 16.96 16.98 16.55 16.59 16.34 16.47 16.31 16.44

Lower Partial Standard Deviation (%) 17.51 17.64 17.29 17.27 16.88 17.10 16.89 17.03

Prop. of Leverage (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Avg. Turnover (%) 0.08 0.08 0.07 0.08 0.07 0.08 0.07 0.07

Avg. Excess Return (%) 17.60 17.57 17.62 18.04 18.02 18.17 17.13 17.04

Cumulative Return (%) 35.71 35.63 35.95 37.01 37.06 37.38 34.79 34.50

Sharpe Ratio 1.04 1.03 1.06 1.09 1.10 1.10 1.05 1.04
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