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ML versus Econometrics

» Main goal: prediction, classification, pattern recognition,
cluster analysis, etc.

» Not much attention to inference or causal analysis, at least
from a computer science perspective.

» Interpretation is not necessary a key ingredient.

» Statistical learning gives more attention to inference and
causal analysis.

» Statistical methods for prediction, inference, causal
modeling of economic relationships.

» Inference is a goal and interpretation is important.

» Causal inference is a goal for decision making.



A great matching:
Machine learning
with
Big Data




A great matching:
Machine learning
with
Big Data
with
Fconometrics




What is “Big Data”?

“The sexy job in the next ten years will be statisticians. Because now we really do
have essentially free and ubiquitous data. So the complimentary factor is the
ability to understand that data and extract value from it.”

Hal Varian
Chief Economist, Google
January, 2009



What is “Big Data”?

“The sexy job in the next ten years will be statisticians. Because now we really do
have essentially free and ubiquitous data. So the complimentary factor is the
ability to understand that data and extract value from it.”

Hal Varian
Chief Economist, Google
January, 2009

> amount of data. We have data on everything!




What is “Big Data”?

“The sexy job in the next ten years will be statisticians. Because now we really do
have essentially free and ubiquitous data. So the complimentary factor is the
ability to understand that data and extract value from it.”

Hal Varian
Chief Economist, Google
January, 2009

> amount of data. We have data on everything!

» Large amount of variables and/or observations.



What is “Big Data”?

“The sexy job in the next ten years will be statisticians. Because now we really do
have essentially free and ubiquitous data. So the complimentary factor is the
ability to understand that data and extract value from it.”

Hal Varian
Chief Economist, Google
January, 2009

> amount of data. We have data on everything!

» Large amount of variables and/or observations.

» A quote from SAS (www.sas.comen_us/insightsbig-datawhat-is-big-data.html):
“Big data is a term that describes the large volume of data — both
and — that inundates a business on a
day-to-day basis. But it’s not the amount of data that’s important.
It’s what organizations do with the data that matters. Big data can
be analyzed for insights that lead to better decisions and strategic

business moves.”
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What is “Big Data”?
Structured versus unstructured data

Structured data:

> information that uploads nicely into
traditional row database structures, lives in fixed fields,
and is easily detectable via search operations or algorithms.

10



What is “Big Data”?
Structured versus unstructured data

Structured data:

> information that uploads nicely into
traditional row database structures, lives in fixed fields,
and is easily detectable via search operations or algorithms.

» Is relatively simple to enter, store, query, and analyze, but
it must be strictly defined in terms of field name and type
(e.g. numeric, date, currency), and as a result is often
restricted by character numbers or specific terminology.

10



What is “Big Data”?

Structured versus unstructured data

Structured data:

> information that uploads nicely into
traditional row database structures, lives in fixed fields,

and is easily detectable via search operations or algorithms.

» Is relatively simple to enter, store, query, and analyze, but
it must be strictly defined in terms of field name and type
(e.g. numeric, date, currency), and as a result is often
restricted by character numbers or specific terminology.

Unstructured data:
>

10



What is “Big Data”?

Structured versus unstructured data

Structured data:

> information that uploads nicely into
traditional row database structures, lives in fixed fields,
and is easily detectable via search operations or algorithms.

» Is relatively simple to enter, store, query, and analyze, but
it must be strictly defined in terms of field name and type
(e.g. numeric, date, currency), and as a result is often
restricted by character numbers or specific terminology.

Unstructured data:
>

» Unstructured data has internal structure but is not
organized via pre-defined data models or schema.

10



What is “Big Data”?

Structured versus unstructured data

Structured data:

> information that uploads nicely into
traditional row database structures, lives in fixed fields,
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» Is relatively simple to enter, store, query, and analyze, but
it must be strictly defined in terms of field name and type
(e.g. numeric, date, currency), and as a result is often
restricted by character numbers or specific terminology.

Unstructured data:
>

» Unstructured data has internal structure but is not
organized via pre-defined data models or schema.

» Examples: text files, web pages, social media, email, etc...
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From unstructured to structured data

Example: Economic Policy Uncertainty
Baker, Bloom and Davies (QJE, 2016)
» Index from three types of underlying components:
1. First component quantifies of
policy-related economic uncertainty.
2. A second component reflects the number of federal tax code
provisions set to expire in future years.
3. The third component uses disagreement among economic
forecasters as a proxy for uncertainty.
» From unstructured to structured data: The first
component is an index of search results from 10 large
newspapers.

USA Today, the Miami Herald, the Chicago Tribune, the
Washington Post, the Los Angeles Times, the Boston Globe, the
San Francisco Chronicle, the Dallas Morning News, the New
York Times, and the Wall Street Journal.
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2016).
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From unstructured to structured data

Example: News implied VIX (NVIX)
Moreira and Manela (JFE, 2017)

| 2

| 2

>

Text-based measure of uncertainty starting in 1890 using
front-page articles of the Wall Street Journal.

NVIX peaks during stock market crashes, times of
policy-related uncertainty, world wars, and financial crises.

In US postwar data, periods when NVIX is high are
followed by periods of above average stock returns, even
after controlling for contemporaneous and forward-looking
measures of stock market volatility.

NVIX is a key predictor of the equity premium.

Methodology: ML regression of VIX on regressors based on
text data.
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Fig. 1. News implied volatility 1890-2009. Solid line is end-of-month Chicago Board Options Exchange volatility implied by options VIX,. Dots are news
implied volatility (NVIX), VIX, = wo +W-X,. Where x,; are appearances of n-gram i in month ¢ scaled by total month t n-grams and w is estimated
with a support vector regression. The train subsample, 1996 to 2009, is used to estimate the dependency between news data and implied volatility. The
test subsample, 19861995, is used for out-of-sample tests of model fit. The predict subsample includes all earlier observations for which options data
and, hence, VIX are not available. Light-colored triangles indicate a nonparametric bootstrap 95% confidence interval around VIX using one thousand
randomizations. These show the sensitivity of the predicted values to randomizations of the train subsample.

Source: Moreira and Manela (JFE, 2017).
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2014

Source: https://www.elderresearch.com/company/blog/42-v-of-big-data
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Gu, Kelly and Xiu (2018)

Bryzgalova (2015); Feng, Giglio and Xiu (2017); Kozak,
Nagel and Santosh (2018), ...

Callot, Kock and Medeiros (JAE, 2017); Brito, Medeiros
and Ribeiro (2018), ...

Scharth and Medeiros (IJF, 2009); Fernandes, Medeiros
and Scharth (JBF, 2014), ...

Lots of potential applications due to availability of massive
datasets and new tools.

18



Models/Methods

19



What is a Machine Learning Model?

» One of the simplest ML method: !

‘Z/t:50+51$1t+'--+5pxpt+ut,tzl,...,T,

where:

20



What is a Machine Learning Model?

» One of the simplest ML method: !

‘Z/t:50+51$1t+'--+6pxpt+ut,tzl,...,T,

where:
— y¢ is the output variable (response) for element ¢, ¢,
j=1,...,p, is the j-th covariate for element ¢ and w; is the error
term;

20



What is a Machine Learning Model?

» One of the simplest ML method: !

‘Z/t:50+51$1t+'--+6pxpt+ut,tzl,...,T,

where:

— y¢ is the output variable (response) for element ¢, ¢,
j=1,...,p, is the j-th covariate for element ¢ and w; is the error
term;

— p parameters to be estimated (51,. .., 3p) with T observations.

20



What is a Machine Learning Model?

» One of the simplest ML method: !

‘Z/t:50+51$1t+'--+5pxpt+ut,tzl,...,T,

where:

— y¢ is the output variable (response) for element ¢, ¢,
j=1,...,p, is the j-th covariate for element ¢ and w; is the error
term;

— p parameters to be estimated (51,. .., 3p) with T observations.

» What do we learn?

20



What is a Machine Learning Model?

» One of the simplest ML method: !

‘Z/t:50+51$1t+'--+5pxpt+ut,tzl,...,T,

where:

— y¢ is the output variable (response) for element ¢, ¢,
j=1,...,p, is the j-th covariate for element ¢ and w; is the error
term;

— p parameters to be estimated (51,. .., 3p) with T observations.

» What do we learn?

— For sure: The best linear projection of y on the covariates
x = (z1,...,xp)". Exact solution by Ordinary Least Squares

(OLS).

20



What is a Machine Learning Model?

» One of the simplest ML method: !

‘Z/t:50+51$1t+'--+5pxpt+ut,tzl,...,T,

where:

— y¢ is the output variable (response) for element ¢, ¢,
j=1,...,p, is the j-th covariate for element ¢ and w; is the error
term;

— p parameters to be estimated (51,. .., 3p) with T observations.

» What do we learn?
— For sure: The best linear projection of y on the covariates
x = (z1,...,xp)". Exact solution by Ordinary Least Squares
(OLS).
— Under some assumptions: The E(y|x) or even the causal effects
of changes in « on y

20
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» One of the simplest ML method: !

‘Z/t:50+51$1t+'--+5pxpt+ut,tzl,...,T,

where:

— y¢ is the output variable (response) for element ¢, ¢,
j=1,...,p, is the j-th covariate for element ¢ and w; is the error
term;

— p parameters to be estimated (51,. .., 3p) with T observations.

» What do we learn?

— For sure: The best linear projection of y on the covariates
x = (z1,...,xp)". Exact solution by Ordinary Least Squares
(OLS).

— Under some assumptions: The E(y|x) or even the causal effects
of changes in « on y

» Linear regression is a GREAT ML method!
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What is a Machine Learning Model?

» However, in some cases, linear regression is not a good
option:

— High dimensions: p > T = OLS is not feasible.
— Nonlinearities
— Nonlinearities + High dimensions

» The cases above are becoming more and more frequent!
» Example: Moreira and Manela (JFE, 2017)
— vy is the VIX and x is a vector with 468,091 entries representing

one- and two-word n-gram frequencies from WJS frontpages:

appearances of n-gram ¢ in month ¢

Tit =
" total n-grams in month ¢

— An n-gram is a contiguous sequence of n items from a given
sample of text or speech.

— The text is decomposed into five categories: War, Financial
Intermediation, Government, Stock Markets, and Natural
Disasters.

21
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» Which model should we choose?

— Linear versus nonlinear

— Parametric versus non-parametric versus semi-parametric

— Many different variable selection methods

— High risk of cherry picking!!! Data-mining in the bad sense of the
term.

» Names to keep in mind (just a few):

— Variable selection methods: Bagging, Boosting, LASSO,
Adaptive LASSO, Group LASSO, Fused LASSO, SCAD,
Complete Subset Regression, Bayesian methods, factor models.

— Models: linear regression, additive models, regression trees,
random forests, neural networks, deep learning, kernel regression,
series regression, splines.
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Machine Learning Models

> versus learning
» Supervised learning:

— input-output mapping:

vw = f (ze) + we
output mapping input (Big?) error
— We need to choose the and the

» Unsupervised learning:
— No inputs, just outputs!
— The goal is to find “interesting” patters in data and there are no
desired outputs given a set of inputs.
— Unconditional models, cluster analysis, missing value
imputation, factor construction, etc.
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» Back to the question: How should we choose a model?
— Old forecasting school: choose the model with the best
out-of-sample (OOS) performance.
— Ensamble (forecast combination): use them all.
— Ensamble 2.0: use a subset of models.
» This is still an open question!
» No free-lunch theorem (Wolpert, 1996): there is NO
universal best model.
— The set of assumptions that works in one domain may work
poorly in another.

» Prediction versus causality.

Big Data + Big Models 4+ Big Set of Models

BIG PROBLEMI!!!
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Conducting inference with respect a set of parameters after
model selection is a challenging task.

Finite sample inference is very complicated and the
asymptotic results are usually not uniform over a wide
class of probability distributions = asymptotic
distributions depend on the values of the true parameter.
Difficult to distinguish among smallish coefficients and zero.
Inferential procedures must be adapted and conducting
standard test ignoring model selection is wrong. Solution
available for cross-section (see Victor Chernozhukov’s
papers). For time-series, solutions available only for specific
settings; see Carvalho, Masini and Medeiros (JoE, in press).
The lack of uniform convergence is not a problem of Big
Data (high-dimensions) and it is due to the model search
methods that are applied before inference is conducted.

On the other hand, prediction (forecasting) after model
selection is a much easier task.
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Model Selection in High-Dimensions

» High-Dimensional Models:

— Relatively High-Dimension: Models with many candidate
variables p compared to the sample size n (or T'), but usually
less than n.

— Moderately High-Dimension: Models with candidate
variables proportional to the sample size, usually greater than
the sample size.

— High-Dimension: Models with more candidate variables than

observations, and the number of candidate variables grows
polynomially or exponentially with n (or T').

26



Model Selection in High-Dimensions: Challenges

1. Prediction, oracle properties.
Same prediction performance as the “true” model.
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Model Selection in High-Dimensions: Challenges

1. Prediction, oracle properties.
Same prediction performance as the “true” model.

2. Variable (Model) selection.
Select only the correct set of relevant variables.

3. Variable screening.
Select at least the correct set of variables.

4. Inference.
Distribution of the estimates.
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» Estimation (model selection) in (linear) high dimension
environments can be tackled in several ways:

1.

4.

5.
6.

(Dynamic) Factor Models (DFM) = dimension reduction.
All variables are relevant but their variability can be summarized
with a very small number of factors.

. Penalized estimation (regularization)/shrinkage.

Most of the variables are not relevant.

cost = goodness of fit + penalty.

Bayesian methods (sort of shrinkage).

Bootstrap Aggregation (Bagging) and Boosting (sort of
shrinkage).

Complete Subset Regressions (CSR)

Support Vector Machines (SVM)

» Nonlinear alternatives:

1.
2.

3.

Regression trees and neural networks

Shrinkage methods and bagging and boosting as well can be
applied in nonlinear methods.

Bayesian methods.
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The Road Map

Lecture 1:
» Linear models with shrinkage

» Applications to covariance matrix forecasting

Lecture 2:
» Nonlinear models

» Applications to equity premium forecasting

29



Shrinkage in Linear Models:
Ridge, LASSO, Adaptive LASSO, Elastic
Net

What happens when p >> T in linear regressions?

30
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-z = (214, . . -, xpt) is a vector of p exogenous variables,
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Framework: Linear Regression Model

» We are interested in single-equation linear models

yr = Bo + Bz + w

where

- @y = (%11, ...,Tp) is a vector of p exogenous variables,
— wuy IS a zero-mean innovation,
— @y = [2(9), £:(S°)), +(S) € R® is the vector of relevant

variables and x¢(S°) € R’~* is the vector of irrelevant ones.

B =[Bs, By
— p=p(T) and s = s(T'). T is the sample size.
» Goals:

1. Select the right set of variables: Bs # 0 and fisc = 0 (model
selection).

2. Estimate B4 as if the correct set of variables is known to the
econometrician.
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Penalized Least Squares

» A Penalized Least Squares estimator B:

where

T
. ' )
BN argergm;(yt B

P
'z0)” + Zp/\(\ﬁﬂ);

j=1
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Penalized Least Squares

» A Penalized Least Squares estimator 3:

T P
B(\) =argmin > (g — B'z:)* + > pal185)),
BeB oy j=1

where
-z = (L,zy).
— pa(|B;]) is a non-negative penalty function indexed by the
X (eg pa(1B5]) = AIB; 1%, or
pa(1Bi1) = AlBj1)-

» ) controls the “number of parameters” in the model.

» If A = oo no variables enter the model, if A = 0 it is just
the OLS estimator.

» Key assumption (for some methods): sparsity.
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Sparse Models

» We say a model is if the true parameter vector 3 is
, 1.e., most elements in 3 are either zero or
negligibly small (compared to the sample size).

» In some cases (for example, linear models for the
conditional mean) it is equivalent to say that the number
of variables is small compared to the number of

variables.

» Sparse modeling has been successfully used to deal with
high-dimensional models and is a crucial condition for
identifiability.
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The Ridge estimator is defined as follows:

T
Brigge(\) = arg min S —Bz)+ 21> 8

BeB oy =0

“Shrinks” towards zero parameters associated with
redundant predictors (not exactly).

A is a shrinkage parameter to be chosen;
The Ridge solution is not sparse.

The solution ,El Ridge 18 €asy to find as the problem remains
quadratic in 3:

I/B\Ridge ()\) = (Z,Z + )\I)_1 Z/y

Good for prediction but not for variable selection.
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The LASSO - Tibshirani (JRRS B, 1996)

» Least Absolute Shrinkage and Selection Operator
(LASSO):

T P
Brasso(\) = argmin» (g — B'z)” + 1) _ 8]
BeB 1 j=1

» “Shrinks” to zero parameters associated with redundant
predictors.

» The regularization path can be efficiently estimated.

» Can handle (many) more variables than observations
(p>>T).

» Under some conditions can select the correct subset of
relevant variables.
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LASSO versus Ridge
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LASSO and Model Selection
Consistency

Estimation Consistency
B—ﬁoi)O, asT — oo.

Model Selection Consistency
P({i:B#O}:{i:BO;&O}> — 1, asT — o0.
Sign Consistency

P(,@iﬁ[))HlasT—M)o

where
B = 3% < sign (B) = sign (,80>
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LASSO and Model Selection

The sign Function

The sign function is defined as

sign(x) =

1
0
-1

ifx >0
ifz=0
ifz <0
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Sign Consistency

Definitions

Strong Sign Consistency
The LASSO estimator is strongly sign consistent if

dAr = f(T) such that
Jim P (BOw) 28°) =1

General Sign Consistency
The LASSO estimator is general sign consistent if

Jim P (3)\,,@()\) L] 50) —1

» Strong sign consistency implies general sign consistency
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LASSO and Model Selection

Sign Consistency

General Sign Consistency versus Strong Sign Consistency

» Strong Sign Consistency implies one can use a
pre-selected A to achieve consistent model selection via the
LASSO.

40



LASSO and Model Selection

Sign Consistency

General Sign Consistency versus Strong Sign Consistency

» Strong Sign Consistency implies one can use a
pre-selected A to achieve consistent model selection via the
LASSO.

» General Sign Consistency means for a random
realization there exists a correct amount of regularization
that selects the true model.
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LASSO and Model Selection

Irrepresentable Condition
Strong Irrepresentable Condition
dn > 0 such that

~ ~—1 .
‘ZSCSESS&gn (,803) <1l-1

Weak Irrepresentable Condition

<1

~ ~—1 .
ESCSESSslgn (,6%)

» 1 e R®%) is a vector of ones, and the inequality holds
element-wise.
» The Irrepresentable Condition is a key condition for model

selection consistency of the LASSO!
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LASSO and Model Selection

Irrepresentable Condition
Strong Irrepresentable Condition
dn > 0 such that

~ ~—1 .
‘ESCSESSS'gn (505) <1-n

Weak Irrepresentable Condition

<1

~ ~—1 .
ESCSESSslgn (,6%)

» 1 e R®%) is a vector of ones, and the inequality holds
element-wise.

» The Irrepresentable Condition is a key condition for model
selection consistency of the LASSO!

» This is a too strong condition! a1



The Adaptive LASSO - Zou (JASA, 2006)

» The Adaptive LASSO (adaLLASSO) estimator is given by

T

p
BadaLASSO = ar% mBin D (e —Bz)" + 2 wlBjl,
S

t=1 j=1

where wy, ..., w, are non-negative pre-defined weights.
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The Adaptive LASSO - Zou (JASA, 2006)

» The Adaptive LASSO (adaLLASSO) estimator is given by

T P
~ ) )
Badarasso = argmin » (y — B'z)” + 1) wlBjl,
BeB o1 j=1
where wy, ..., w, are non-negative pre-defined weights.

» Usually w; = |5~j|_7, for 7 > 0, where /;’1 is an initial
estimator (e.g., LASSO).
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The Adaptive LASSO - Zou (JASA, 2006)

» The Adaptive LASSO (adaLLASSO) estimator is given by

T P
~ ) )
Badarasso = argmin » (y — B'z)” + 1) wlBjl,
BeB o1 j=1
where wy, ..., w, are non-negative pre-defined weights.

» Usually w; = |5~j|_7, for 7 > 0, where /;’1 is an initial
estimator (e.g., LASSO).

» Provide consistent estimates for the non-zero parameters;
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The Adaptive LASSO - Zou (JASA, 2006)

» The Adaptive LASSO (adaLLASSO) estimator is given by

T P
~ ) )
Badarasso = argmin » (y — B'z)” + 1) wlBjl,
BeB o1 j=1
where wy, ..., w, are non-negative pre-defined weights.

» Usually w; = |5~j|_7, for 7 > 0, where /;’} is an initial
estimator (e.g., LASSO).
» Provide consistent estimates for the non-zero parameters;

» Has the oracle property under some conditions.
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The Adaptive LASSO - Zou (JASA, 2006)

v

The Adaptive LASSO (adaLLASSO) estimator is given by

T P
Badarasso = argmin » (y — B'z)” + 1) wlBjl,
BeB o1 j=1
where wy, ..., w, are non-negative pre-defined weights.

Usually w; = |5~j|_7, for 7 > 0, where /;’} is an initial
estimator (e.g., LASSO).

Provide consistent estimates for the non-zero parameters;
Has the oracle property under some conditions.

Theoretical results in general time-series framework:
Medeiros and Mendes (JoE, 2016)
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The Elastic Net Estimator

» The Nalve Elastic Net estimator is defined as

BeeR? 7 = j=1

B(nawe) = argmlnz y — B'z¢) 2 4 )\QZﬁ2 + A\ Z |Bi.
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The Elastic Net Estimator

» The Nalve Elastic Net estimator is defined as

B(naive) = argmmz ye — B'20)% + X\ 252 + A1 Z |Bil-

BeeR? 7 = j=1

» The Elastic Net estimator is given by

B = (14 A9)B(naive).
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The Elastic Net Estimator

» The Nalve Elastic Net estimator is defined as

p

T p
B(naive) = arg min Z(yt —B'z)? + Ao Z B+ A Z |Bil-

BeeR? 1

j=1 j=1

» The Elastic Net estimator is given by

~ ~

B = (1 + A2)B(naive).

» The naive EL-Net estimator selects the same model as the
EL-Net version.



The Elastic Net Estimator

The Geometry of the Elastic Net

B2

- Ridge
- Lasso
—— Elastic Net

By
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To Learn More about Shrinkage
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Empirical Example:
Forecasting Large Dimensional Realized
Covariance Matrices

Callot, Laurent, Anders B. Kock and Marcelo C. Medeiros (2017). Modeling and
Forecasting Large Realized Covariance Matrices and Portfolio Choice. Journal

of Applied Econometrics, 32, 140-158.
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Dataset

» 30 stocks from the Dow Jones index from 2006 to 2012
with a total of 1474 daily observations.

» Daily realized covariances are constructed from 5 minutes
returns by the method of Lunde, Shephard, Sheppard

(2013).
» The stocks can be classified in 8 broad categories.
Basic Technology Consumer Consumer
Materials Cyclical Non-cyclical
2 4 3 7
Energy Financial Industrial Communication
2 3 5 4
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Results: Sectors

Lagged variance

Lagged covariance

Basic Materials
Consumer, Non-cyclical
Financial
Communications
Industrial

Energy

Technology

Consumer, Cyclical

Basic Materials
Consumer, Non-cyclical
Financial
Communications
Industrial

Energy

Technology

Consumer, Cyclical

Variance Equations

0.75 040 0.14 0.52 0.23 035 0.57 0.39
0.17 048 037 037 024 020 0.26 0.32
0.00 042 0.99 024 064 020 0.12 048
032 023 010 0.57 0.19 0.14 0.27 0.19
0.00 019 0.28 0.16 1.00 0.08 0.07 0.18
0.58 045 046 033 0.02 1.00 0.38 0.55
034 0.19 0.09 0.24 0.02 0.05 0.63 0.12
0.34 0.54 035 029 030 020 031 0.70
0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.01
0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.01 0.02 0.00 0.00 0.00 0.01 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.02 0.01 0.01 0.02 0.03 0.00 0.03 0.02
0.01 0.03 0.01 0.03 0.01 0.01 0.02 0.03
0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Results: Sectors

Lagged variance

Lagged covariance

Basic Materials
Consumer, Non-cyclical
Financial
Communications
Industrial

Energy

Technology

Consumer, Cyclical

Basic Materials
Consumer, Non-cyclical
Financial
Communications
Industrial

Energy

Technology

Consumer, Cyclical

Covariance Equations

0.81 0.27 0.10 0.24 024 0.93 0.26 0.29
048 0.71 056 032 028 035 0.36 041
0.13 0.25 0.64 0.16 0.06 0.32 0.15 0.17
0.62 0.57 0.54 0.65 0.51 0.70 0.61 0.58
0.13 0.13 0.18 0.18 0.34 0.08 0.10 0.07
0.12 0.08 0.21 0.06 0.03 056 0.11 0.12
0.74 049 051 052 043 034 0.82 0.53
0.14 052 055 0.37 037 0.51 0.29 0.90
0.09 0.12 0.12 0.11 0.09 0.12 0.09 0.11
0.04 0.05 0.05 0.04 0.03 0.05 0.04 0.03
0.11r 0.14 0.18 0.11 0.07 0.10 0.10 0.10
0.07 0.09 0.09 0.11 0.04 0.10 0.08 0.08
0.17 0.14 0.15 0.14 0.24 0.11 0.14 0.15
0.16 0.16 0.16 0.15 0.10 0.24 0.15 0.16
0.08 0.07 0.09 0.08 0.05 0.07 0.08 0.06
0.05 0.05 0.05 0.06 0.04 0.08 0.05 0.06
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Results: Average Equation Size

VAR(1), Lasso, Diagonal \ \

VAR(1), Lasso, Off Diagonal

[

N

o
1

[

=

o
i

T T T T T
Apr 2010 Oct 2010 Apr 2011 Nov 2011  Apr 2010

T T T
Oct 2010 Apr 2011 Nov 2011

VAR(20), Lasso, Diagonal

VAR(20), Lasso, Off Diagonal

Model size (average across equations)

254

T I. T T T
Apr 2010 Oct 2010 Apr 2011 Nov 2011  Apr 2010
Date

T T T
Oct 2010 Apr 2011 Nov 2011

» Diagonal equations more stable than off-diagonal ones.

» Diagonal equations are smaller.

» Flash Crash: May 6th 2010.
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Results: Parameter Stability

Fraction of parameters that change from being zero to non-zero or vice

versa in two consecutive periods

VAR(1), Lasso, Diagonal VAR(1), Lasso, Off Diagonal

0y e 0 S 0 0 S 0
Apr 2010 Oct 2010 Apr 2011 Nov 2011  Apr 2010 Oct 2010 Apr 2011 Nov 2011
VAR(20), Lasso, Diagonal VAR(20), Lasso, Off Diagonal

T T T T T T T T
Apr 2010 Oct 2010 Apr 2011 Nov 2011  Apr 2010 Oct 2010 Apr 2011 Nov 2011
VAR(1), Lasso, Matrix logarithm, Diagonal \ \ VAR(1), Lasso, Matrix logarithm, Off Diagonal \

Parameter classification change (%)

. L .

T T .l T “T T T T
Apr 2010 Oct 2010 Apr 2011 Nov 2011  Apr 2010 Oct 2010 Apr 2011 Nov 2011
Date

00




Results: Forecast Error and Penalty Parameter

£a-norm of the 1-step ahead forecast error (left panel) and average penalty

parameter (right panel) selected by BIC.

VAR(1) I, | I VAR(1) A
100 0.035-
0.030-
50 0.025
0.020 -
© 0 T T T T T T T
=] Apr 2010 Oct 2010 Apr 2011 Nov 2011 Apr 2010 Oct 2010 Apr 2011 Nov 2011
[ VAR(20) I, | | VAR(20) A
0.07-
100 0.06-
504 0.05-
0.04-
0 T T 0031 T T T
Apr 2010 Oct 2010 Apr 2011 Nov 2011 Apr 2010 Oct 2010 Apr 2011 Nov 2011
Date

type — Diagonal — Off Diagonal
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Results: Selection Frequency — VAR(1) LASSO

Covariates

I
o i

0 0 0 T v
Mar 2010 Aug 2010 Jan 2011 Jun 2011 Dec 2011
Date

Selection frequency

0.25 0.50 0.75
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Results: Selection — VAR(1) LASSO
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Results: Common Factor — VAR (1) LASSO

Lagged variance of the S&P selected in the variance equations of the Dow
Jones stocks (left panel) and lagged variances of the Dow Jones stocks

selected in the equation of the variance of the S&P 500 (right panel).

\ S&P selected in variance equations.

Variances selected in S&P equation.

(m rrum INTC =

Covariates

GE = L

Date
Estimated parameter Discarded . Selected

55



Forecasting Results

AMedAFE AMaxAFE ly
Model h A D O A D O A D (6]
No-Change 1 033 057 033 3.53 353 147 11.22 598 9.22
Censored 5 046 0.79 045 4.51 451 1.91 1502 7.89 1241
20 0.58 098 0.57 512 512 222 1805 925 15.17
DCC 1 056 095 0.55 840 836 4.28 2237 1240 1817
EWMA(X = 0.96) 1 088 1.08 0.88 807 803 455 2889 1255 25.78
VAR(1), Lasso 1 037 061 037 334 332 1.72 1198 593 10.21
5 044 0.73 043 377 3.64 225 1425 6.82 12.27
20 0.69 096 0.68 437 4.03 3.16 19.98 811 18.07
VAR(1), Lasso 1 034 055 033 3.08 304 1.76 11.26 54 9.72
Post Lasso OLS 5 045 0.73 044 38 3.68 223 1439 6.87 12.36
20 0.61 093 0.6 434 4.09 294 1855 806 16.43
VAR(1), adaptive Lasso 1 0.37 0.62 0.37 3.46 3.44 181 1221 6.07 104
Initial estimator: Lasso 5 0.44 0.74 0.44 3.88 3.78 232 1449 6.93 12.52
20 0.62 098 0.61 445 418 3.13 1944 838 17.3
VAR(1), Lasso 1 035 058 035 325 325 142 11.31 576 948
Log-matrix transform 5 042 0.73 041 3.58 3.58 1.62 13.26 6.65 11.2
20 048 094 047 4.02 4.02 1.81 1527 804 12.64
VAR(1), Lasso 1 037 061 037 334 332 1.77 1244 593 10.22
Including S&P 500 5 044 0.74 043 3.79 3.65 233 1477 6.84 1231
20 0.68 0.95 0.67 437 4.02 3.16 2046 8.08 17.96
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Forecasting Results

AMedAFE AMaxAFE ly
Model h A D (6] A D (6] A D (6]
No-Change 1 033 057 033 353 353 147 11.22 598 9.22
Censored 5 046 0.79 045 4,51 451 191 15.02 7.89 1241
20 0.58 0.98 0.57 5.12 512 222 18.05 9.25 15.17
DCC 1 056 095 055 840 836 4.28 2237 1240 18.17
EWMA(X = 0.96) 1 088 1.08 088 807 803 4.55 2889 12.55 25.78
VAR(20), Lasso 1 035 057 035 319 316 1.62 11.35 559 9.66
5 041 0.65 04 3.54 346 201 13.09 628 11.25
20 0.54 0.84 0.53 4.03 387 256 1629 7.44 143
VAR(20), Lasso 1 033 052 032 301 292 176 10.88 5.09 9.44
Post, Lasso OLS 5 042 0.66 041 3.56 3.48 2.1 1343 6.31 11.65
20 049 0.79 047 4.02 3.9 238 1529 727 13.25
VAR(20), adaptive Lasso 1 0.36 0.59 0.35 345 344 1.61 11.76 598 9.89
Initial estimator: Lasso 5 043 0.69 042 3.75 3.72 2.01 13.62 6.66 11.65
20 0.58 0.93 0.57 4.16 4.04 268 1749 8.03 15.33
VAR(20), Lasso 1 036 057 035 316 3.16 139 11.22 559 949
Log-matrix transform 5 04 066 039 342 342 154 1253 6.22 10.63
20 0.46 0.84 045 3.81 38 1.73 1437 7.36 12.06
VAR(20), Lasso 1 035 057 035 319 3.16 1.64 11.78 5.59  9.67
Including S&P 500 5 041 0.65 04 3.54 346 2.01 1355 6.28 11.26
20 0.54 0.84 053 4 385 254 1683 7.4 1438
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Portfolio Results

The investor’s problem at t = tg,...,T — 1 is to select a vector of
weights for period ¢ + 1 based solely on information up to time ¢:

~ . / QS
Wi41 = arg wm}rfll Wy 1 241w
t

;o o~
s.t. Wi t+1 = [Mtarget
n
E wit41 =1
=1

> fwirsa[l(wir < 0) < 0.30
=1
\wit+1| S 0207

where w41 is an n x 1 vector of portfolio weights, fitarget is the target
expected rate of return from ¢ to ¢ + 1 and I(+) is an indicator
function.

58



Portfolio Results

Model VAR(1) VAR(20) No-Change DCC EWMA
Estimator: Lasso PostLasso adalasso  Lasso  Lasso Post Lasso adaLasso  Lasso

Statistic OLS  Init: Lasso (Log Mat) OLS  Init: Lasso (Log Mat)  Censored

Average weight 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 005 0.0
Max weight 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
Min weight -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20
Average leverage 0.28 0.28 0.28 0.29 0.29 0.29 0.29 0.29 0.29 029 0.29
Proportion of leverage 0.22 023 022 027 0.22 022 0.22 0.28 0.24 024 0.23
Average turnover 0.02 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.03 001 0.01
Average return (x10 ’) 2.58 2.72 3.58 5.89 2.85 2.96 2.64 6.27 1.99 0.40 0.14
Accumulated return 1007 10.71 15.16 2077 1145 1193 1034 30.02 713 048 -1.60
Standard deviation (x102)  0.97 098 098 1.00 0.97 0.99 0.97 0.99 0.97 100 0.99
Sharpe ratio (x102) 2.66 277 3.65 5.87 2.95 3.01 270 6.20 204 040 0.14
Diversification ratio 1.46 1.46 147 143 1.46 1.46 1.44 1.43 1.48 1.43 1.43
Economic Value 7 = 1

No-Change (censored) 1.50 1.83 4.08 10.25 221 2.45 1.64 11.32

DCC 5.73 6.07 8.41 1484 646 6.72 5.87 15.95

EWMA 6.40 6.74 9.00 1556 7.3 7.39 6.54 16.68

Economic Value 7 = 5

No-Change (censored) 154 177 4.00 9.92 227 2.33 1.64 11.06

DCC 6.13 637 8.71 1489 6.90 6.96 6.24 16.08

EWMA 6.68 6.92 9.27 15.48 7.45 7.51 6.79 16.68

Economic Value 5 = 10

No-Change (censored) 1.58 1.68 3.91 9.50 2.35 217 1.63 10.74

DCC 6.64 6.75 9.08 1495 745 7.26 6.60 16.25

EWMA 7.04 7.1 9.49 15.38 8 7.66 7.00 16.69
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Empirical Example:
Forecasting Even Larger Realized
Covariance Matrices

Brito, Diego, Marcelo C. Medeiros and Ruy M. Ribeiro (2018). Forecasting Large
Realized Covariance Matrices: The Benefits of Factor Models and Shrinkage.
Working paper available at SSRN id 3163668.
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The Setup

Curse of Dimensionality

» RC matrices are highly persistent over time, which suggests
an AR model of large order p (usually p > 20).

» 3. n X n realized covariance matrix.
» y, = vech(X;), such that

p
yt:w+zq’iyt7i+€ta tzla-"aTa
i=1

where:
- ®;, i=1,...,p are the ¢ X ¢ matrices with ¢ = n(n + 1)/2;
— wis a g X 1 vector of intercepts.
» n(n+ 1)/2 equations with a total of n(n+1)(p+1)/2
parameters.
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The Setup

Factor Structure

» Excess return on any asset 4, 7;;:

iy = Baafre+ -+ BixaSrn + i = Biyfi + i
Tte = B:‘,ft + &t

where:
— fit, -+, fr,+ are the excess returns of K factors;
— Bikt, k=1,..., K, are factor loadings for asset ¢;

— &;,¢ is the idiosyncratic error term.

» Factors are linear combinations of returns: long-short stock
portfolios where stocks are sorted on firm characteristics:

fi=Wyr{ W is known
» Loadings are time-varying and are given as:
B, = (Z5,) ' WD,

62



The Setup

Covariance Decomposition

» Under the assumption E(e¢|f;) = 0, we have

2, = cov(Bif,) + cov(er) = BiX 1By + Xe .

» By linearity:
Xy =cov(f,) = cov(Wiry) = WS, Wy,

» Therefore,

~ ~/ ~ ~ ~
2t+1|zt = Bt+1\t2f,t+1|tBt+1|t + 2e,t+1|t-
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. o~ -~ o~ ~ o~
Forecasting Methodology: ... = B, 1= 110 Bisije + Seii1le

Realized Factor Covariance Matrices

» Vector HAR model for y;, = vech[logM(X,)]:

v

month

d
o =+ Pan 1 P+ o

where:
- y‘}fi = vech(Ej:i); Y = vech(2959); y79™" = vech(ZF9™);
~ ¢ =1logM(Zy,);
— Y = LlogM(Zy,0) + - + logM(Zy,¢—4)]; and
- B = 55 [logM(Epe) + -+ logM(Ep—21))-
Estimation via LASSO/adaLLASSO
Penalty parameter is set with the BIC

The inverse LASSO estimates (in absolute value) are used
as weights for the adalLASSO
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. o~ -~ o~ ~ o~
Forecasting Methodology: S, = B, 1,210 Bisije + Se i1l
Loadings

Esfimated fractional (d) by Whittle method - FF1  Esfimated fractional i (d) by Whittle method - FF3
5

(]
02 025 03 035 04 045 as 02 025 03 035 04 045

Estimated fractional differencing parameter (d) by Whittle method - FF5  Estimated fractional differencing parameter (d) by Whittle method - FF7

015 02 025 03 035 04 045 05
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. o~ -~ o~ ~ o~
Forecasting Methodology: S, = B, 1,210 Bisije + Se i1l
Loadings

» Loading dynamics modeled as a HAR model:

d k h
6k,z’,t =w+ Qsdayﬁk?:t_l + ¢week61\g§?t_1 + ¢monthﬁg}zgt_1 + €Lty

where (3 ;; is the (k,i) element of By, i.e., the loading of
stock 7 on factor k at date t.

» Coefficients estimated by OLS.

» No need for LASSO here.
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. o~ -~ o~ ~ o~
Forecasting Methodology: ... = B, 1= 110 Bis1je + Se i1l

Residual Covariance

» Forecasting 3 ; is still subject to the curse of
dimensionality

» We assume that 3¢ ; is where blocks are
defined by industry classification.

» Furthermore, we assume that the dynamics of each block
depends on the elements of the same block at ¢t — 1

» Finally,
(Callot, Kock, and Medeiros, 2017)
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. o~ -~ o~ ~ o~
Forecasting Methodology: ... = B, 1= 110 Bis1je + Se i1l

Residual Covariance

» S sectors:

» The dynamics for y¢ , = vech[logM(Xg ;)],s € {1,2,...,S}:

s .8 SAS s
ys,t = W + @ As,tfl + us,t?

where A7, | = diag[logM(Xg, 4)].

» LASSO/adalLASSO estimation equation by equation.
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Data

Realized Covariance Matrices

| 2

The data consists of daily realized covariance matrices of
returns for constituents of the S&P 500 index

We consider companies that remained in the index and had
balance sheet data for the full sample period, totaling 430
stocks

These matrices were constructed from 5-minute returns by
composite realized kernel (Lunde et al, 2016 JBES)

Sample period: January 2006 - December 2011 (1495 days).
Estimation windows with 1,000 observations.

Data cleaning: merges and splits.

69



Data

Factors and Sector Classification

> : Size (SMB), Value
(HML), Gross Profitability, Investment, Asset Growth and
Accruals (CRSP/Compustat database)

> : 1F(Market), 3F(1F + Size
and Value), 5F(3F + Gross Profitability and Investment),
and 7TF(5F + Asset Growth and Accruals)

> : 10 sectors
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Data

Number of Stocks per Sector

Sector Number of Stocks
Consumer Non-Durables 31
Consumer Durables 8
Manufacturing 65
0Oil, Gas, and Coal Extraction 32
Business Equipment 61
Telecommunications 10
Wholesale and Retail 45
Health Care, Medical Equipments, and Drugs 26
Utilities 36

Others 116




Results

Covariance Structure

» The blue dots represent the correlations larger than 0.15 in absolute value in
at least 1/3 of the sample days.
» Red squares represent the groups defined by SIC.

400-

100-
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Results

Factor Decomposition and Residual Covariance

1 Factor 3 Factors
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Forecasting Results

Forecast Precision for Factor Covariance Matrices

» /5 represents the average fo-forecast error over the 473
out-of-sample days, that is,

1 T=T,

average (a-forecast error = ——— g ||€r+1]]-
T, — Ty +1 =
=11

» 05/ls g represents the ratio of the fp-forecast error for
other methods to the random walk value.

ly ly | o rw
Model Random Walk FHAR FHAR, Log-matrix
1F 0.40 0.96 (0.96) 0.92 (0.92)
3F 0.44 0.98 (0.97) 0.90 (0.90)
5F 0.51 0.95 (0.95) 0.89 (0.89)
7F 0.62 0.99 (1.04) 0.86 (0.87)
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Forecasting Results

Forecast Precision for Complete Covariance Matrices

Model (Benchmarks) lo/ly rww  VHAR (Log-matrix) {la/ly pwv
RW 1.00 1F, LASSO 0.86
EWMA (Returns) 6.93 3F, LASSO 0.85
BEKK-NL 1.71 5F, LASSO 0.85
DCC-NL 1.71 7F, LASSO 0.85
Block 1F 0.97 1F, adaLASSO 0.86
Block 3F 0.97 3F, adaLASSO 0.85
Block 5F 0.97 5F, adaLASSO 0.85
Block 7F 0.97 7F, adaLASSO 0.85

Random Walk (RW) ¢y gy 341.57
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Portfolio Results

Statistics for Daily Portfolios - Global Minimum Variance

» Consider the problem of an investor at time
t=tg,...,T — 1 who wishes to construct a minimum
variance portfolio to be held in time ¢t + 1.

» The optimization problem consists of choosing a vector of
weights Wy 1:

~ . / o~
Wiyl = arg min - w241 Wig
Wi+41

subject to w1 =1.
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Portfolio Results

Statistics for Daily Portfolios - Global Minimum Variance

RW Block 1F  Block 3F  Block 5F  Block 7F EWMA BEKK-NL DCC - NL

Standard Deviation (%)  12.07 8.21 8.29 8.25 8.25 14.62 9.41 10.65
Lower Partial SD (%) 12.82 8.79 8.94 8.73 8.83 14.90 9.63 11.31
Avg. Gross Leverage 5.94 3.08 3.14 3.14 3.19 12.55 5.09 4.11
Prop. of Leverage (%) 44.30 44.40 44.22 44.10 44.11 49.17 45.11 51.73

Avg. Turnover (%) 1.80 0.75 0.78 0.78 0.80 0.27 0.11 0.21
Avg. Excess Return (%)  14.20 12.72 14.46 15.37 14.95 3.42 17.98 17.46
Cumulative Return (%) 29.04 26.42 30.59 32.86 31.82 4.74 39.27 37.58

Sharpe Ratio 1.18 1.55 1.74 1.86 1.81 0.23 1.91 1.64
1 Factor 3 Factors 5 Factors 7 Factors
VHAR VHAR VHAR VHAR
(Log matrix) (Log matrix) (Log matrix) (Log matrix)
LASSO aLASSO LASSO aLASSO LASSO aLASSO  LASSO aLASSO

Standard Deviation (%)  8.46 8.42 8.37 8.32 8.29 8.25 8.12 8.09
Lower Partial SD (%) 8.86 8.81 8.78 8.68 8.57 8.53 8.52 8.51
Avg. Gross Leverage 2.66 2.67 2.80 2.80 2.82 2.82 2.93 2.93
Prop. of Leverage (%) 45.89 46.01 44.88 45.03 44.89 45.12 45.26 45.50

Avg. Turnover (%) 0.20 0.22 0.20 0.22 0.19 0.21 0.20 0.22
Avg. Excess Return (%)  15.24 15.18 17.69 17.45 18.93 18.61 18.09 17.85
Cumulative Return (%)  32.49 32.35 38.74 38.13 42.01 41.19 39.85 39.21

Sharpe Ratio 1.80 1.80 211 2.10 2.28 2.26 2.23 2.21




Portfolio Results

Statistics for Daily Portfolios - Restricted Minimum Variance

» Maximum leverage equal to 30% (in some sense, consistent
with a 130-30 fund concept in the mutual fund industry).

» Maximum weights on individual stocks: 20% (in absolute
value).

» The problem for an investor at time t =tg,...,T — 1 is
then given by

~ . / <
Wy = arg min - wy, 1 241 Wit
W41

subject to  wj 11 =1,
N
Z |wigr1|I(wiy < 0) <0.30 and |wi41] < 0.20.
i=1
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Portfolio Results

Statistics for Daily Portfolios - Restricted Minimum Variance

RW  Block IF  Block 3F Block 5F Block 7F  EWMA BEKK-NL DCC - NL
Standard Deviation (%)  13.29 13.34 13.20 13.17 13.25 15.28 15.49 14.72
Lower Partial SD (%) 14.13 13.91 13.66 13.35 13.68 16.47 16.24 15.28
Avg. Gross Leverage 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60
Prop. of Leverage (%) 1.91 3.11 3.08 3.06 2.93 0.71 0.85 1.41
Avg. Turnover (%) 0.43 0.40 0.42 0.41 0.42 0.09 0.10 0.11
Avg. Excess Return (%)  16.72 18.23 19.01 22.42 21.22 13.68 14.24 16.91
Cumulative Return (%) 34.88 38.74 40.83 50.14 46.79 26.74 27.99 34.86
Sharpe Ratio 1.26 1.37 1.44 1.70 1.60 0.90 0.92 115
1 Factor 3 Factors 5 Factors 7 Factors
VHAR VHAR VHAR VHAR
(Log matrix) (Log matrix) (Log matrix) (Log matrix)
LASSO aLASSO LASSO aLASSO LASSO aLASSO  LASSO aLASSO
Standard Deviation (%)  13.20 13.37 12.81 12.86 12.57 12.83 12.63 12.75
Lower Partial SD (%) 13.29 13.64 12.60 12.54 12.54 12.75 12.52 12.62
Avg. Gross Leverage 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60
Prop. of Leverage (%) 2.46 2.44 2.37 2.38 2.43 2.41 2.27 2.25
Avg. Turnover (%) 0.22 0.23 0.24 0.24 0.23 0.24 0.22 0.23
Avg. Excess Return (%) 16.07 19.89 19.72 21.04 20.56 18.93 20.74 19.19
Cumulative Return (%)  33.30 43.13 42.88 46.43 45.22 40.76 45.67 41.48
Sharpe Ratio 1.22 1.49 1.54 1.64 1.64 1.48 1.64 151

79



Portfolio Results

Statistics for Daily Portfolios - Restricted Minimum Variance (Long Only)

» No short-selling.

» The problem for an investor at time t = g, ...
then given by

T —11is

~ . / -~
Wiyl = arg min - w1 341 Wei1
Wi+41

subject to  wj 1 =1,
0 S Wit+1 S 0.20.
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Portfolio Results

Statistics for Daily Portfolios - Restricted Minimum Variance (Long Only)

RW Block 1F Block 3F  Block 5F  Block 7F EWMA

BEKK-NL DCC - NL

Standard Deviation (%) 17.10 17.06 16.96 16.85 16.88 17.74 17.92 17.78
Lower Partial SD (%) 17.56 17.83 17.63 17.49 17.58 18.94 19.16 19.13
Avg. Gross Leverage 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Prop. of Leverage (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Avg. Turnover (%) 0.17 0.16 0.16 0.16 0.16 0.03 0.03 0.04
Avg. Excess Return (%) 14.29 15.86 16.18 14.98 15.06 20.22 15.85 16.28
Cumulative Return (%) 27.49 31.30 32.15 29.25 29.44 42.18 30.91 32.04

Sharpe Ratio 0.84 0.93 0.95 0.89 0.89 1.14 0.88 0.92

1 Factor 3 Factors 5 Factors 7 Factors

VHAR VHAR VHAR VHAR
(Log matrix) (Log matrix) (Log matrix) (Log matrix)
LASSO aLASSO LASSO aLASSO LASSO aLASSO  LASSO aLASSO

Standard Deviation (%) 16.96 16.98 16.55 16.59 16.34 16.47 16.31 16.44
Lower Partial Standard Deviation (%) 17.51 17.64 17.29 17.27 16.88 17.10 16.89 17.03
Prop. of Leverage (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Avg. Turnover (%) 0.08 0.08 0.07 0.08 0.07 0.08 0.07 0.07

Avg. Excess Return (%) 17.60 17.57 17.62 18.04 18.02 18.17 17.13 17.04
Cumulative Return (%) 35.71 35.63 35.95 37.01 37.06 37.38 34.79 34.50

Sharpe Ratio 1.04 1.03 1.06 1.09 1.10 1.10 1.05 1.04
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