
Machine Learning Methods
in Empirical Finance

Marcelo C. Medeiros

Departamento de Economia
Pontif́ıcia Universidade Católica do Rio de Janeiro

Lecture 2
XVIII Encontro Brasileiro de Finanças

1

Regression Trees

2

Regression Trees
Introduction

I Flexible non-parametric predictive model.

I Recursive partition of the input space X (set of explanatory
variables).

I Hierarchical nature

I Interpretability

I Categorical variables and missing data (treated as a
category) easily handled.

I Main disadvantage: highly unstable.
– Easy fixes: bagging and boosting
– Drawback: interpretability lost.

3

Regression Trees
Introduction

I Flexible non-parametric predictive model.

I Recursive partition of the input space X (set of explanatory
variables).

I Hierarchical nature

I Interpretability

I Categorical variables and missing data (treated as a
category) easily handled.

I Main disadvantage: highly unstable.
– Easy fixes: bagging and boosting
– Drawback: interpretability lost.

3

Regression Trees
Introduction

I Flexible non-parametric predictive model.

I Recursive partition of the input space X (set of explanatory
variables).

I Hierarchical nature

I Interpretability

I Categorical variables and missing data (treated as a
category) easily handled.

I Main disadvantage: highly unstable.
– Easy fixes: bagging and boosting
– Drawback: interpretability lost.

3

Regression Trees
Introduction

I Flexible non-parametric predictive model.

I Recursive partition of the input space X (set of explanatory
variables).

I Hierarchical nature

I Interpretability

I Categorical variables and missing data (treated as a
category) easily handled.

I Main disadvantage: highly unstable.
– Easy fixes: bagging and boosting
– Drawback: interpretability lost.

3

Regression Trees
Introduction

I Flexible non-parametric predictive model.

I Recursive partition of the input space X (set of explanatory
variables).

I Hierarchical nature

I Interpretability

I Categorical variables and missing data (treated as a
category) easily handled.

I Main disadvantage: highly unstable.
– Easy fixes: bagging and boosting
– Drawback: interpretability lost.

3

Regression Trees
Introduction

I Flexible non-parametric predictive model.

I Recursive partition of the input space X (set of explanatory
variables).

I Hierarchical nature

I Interpretability

I Categorical variables and missing data (treated as a
category) easily handled.

I Main disadvantage: highly unstable.
– Easy fixes: bagging and boosting
– Drawback: interpretability lost.

3

Regression Trees
Example

I Predict log wages of baseball players based on the length of
the career (years) and number of hits.

304 8. Tree-Based Methods

|Years < 4.5

Hits < 117.5
5.11

6.00 6.74

FIGURE 8.1. For the Hitters data, a regression tree for predicting the log
salary of a baseball player, based on the number of years that he has played in
the major leagues and the number of hits that he made in the previous year. At a
given internal node, the label (of the form Xj < tk) indicates the left-hand branch
emanating from that split, and the right-hand branch corresponds to Xj ≥ tk.
For instance, the split at the top of the tree results in two large branches. The
left-hand branch corresponds to Years<4.5, and the right-hand branch corresponds
to Years>=4.5. The tree has two internal nodes and three terminal nodes, or
leaves. The number in each leaf is the mean of the response for the observations
that fall there.

8.1.1 Regression Trees

In order to motivate regression trees, we begin with a simple example.
regression
tree

Predicting Baseball Players’ Salaries Using Regression Trees

We use the Hitters data set to predict a baseball player’s Salary based on
Years (the number of years that he has played in the major leagues) and
Hits (the number of hits that he made in the previous year). We first remove
observations that are missing Salary values, and log-transform Salary so
that its distribution has more of a typical bell-shape. (Recall that Salary

is measured in thousands of dollars.)
Figure 8.1 shows a regression tree fit to this data. It consists of a series

of splitting rules, starting at the top of the tree. The top split assigns
observations having Years<4.5 to the left branch.1 The predicted salary

1Both Years and Hits are integers in these data; the tree() function in R labels
the splits at the midpoint between two adjacent values.

8.1 The Basics of Decision Trees 305

Years

H
its

1

117.5

238

1 4.5 24

R1

R3

R2

FIGURE 8.2. The three-region partition for the Hitters data set from the
regression tree illustrated in Figure 8.1.

for these players is given by the mean response value for the players in
the data set with Years<4.5. For such players, the mean log salary is 5.107,
and so we make a prediction of e5.107 thousands of dollars, i.e. $165,174, for
these players. Players with Years>=4.5 are assigned to the right branch, and
then that group is further subdivided by Hits. Overall, the tree stratifies
or segments the players into three regions of predictor space: players who
have played for four or fewer years, players who have played for five or more
years and who made fewer than 118 hits last year, and players who have
played for five or more years and who made at least 118 hits last year. These
three regions can be written as R1 ={X | Years<4.5}, R2 ={X | Years>=4.5,
Hits<117.5}, and R3 ={X | Years>=4.5, Hits>=117.5}. Figure 8.2 illustrates
the regions as a function of Years and Hits. The predicted salaries for these
three groups are $1,000×e5.107 =$165,174, $1,000×e5.999 =$402,834, and
$1,000×e6.740 =$845,346 respectively.

In keeping with the tree analogy, the regions R1, R2, and R3 are known
as terminal nodes or leaves of the tree. As is the case for Figure 8.1, decision

terminal
node

leaf

trees are typically drawn upside down, in the sense that the leaves are at
the bottom of the tree. The points along the tree where the predictor space
is split are referred to as internal nodes. In Figure 8.1, the two internal

internal node
nodes are indicated by the text Years<4.5 and Hits<117.5. We refer to the
segments of the trees that connect the nodes as branches.

branch
We might interpret the regression tree displayed in Figure 8.1 as follows:

Years is the most important factor in determining Salary, and players with
less experience earn lower salaries than more experienced players. Given
that a player is less experienced, the number of hits that he made in the
previous year seems to play little role in his salary. But among players who

4

Regression Trees
Mathematical Representation

Notation:

I number of terminal nodes (regions, leaves) K and N parent
nodes;

I different regions denoted as R1, . . . ,RK ;

I root node at position 0;

I parent node at position j has two split (child) nodes at
positions 2j + 1 and 2j + 2;

I each parent node has a threshold (split) variable
associated, xsjt ∈ xt, where sj ∈ S = {1, 2, . . . , p}; and

I J and T are the sets of parent and terminal nodes,
respectively.

5

Regression Trees
Mathematical Representation

Notation:

I number of terminal nodes (regions, leaves) K and N parent
nodes;

I different regions denoted as R1, . . . ,RK ;

I root node at position 0;

I parent node at position j has two split (child) nodes at
positions 2j + 1 and 2j + 2;

I each parent node has a threshold (split) variable
associated, xsjt ∈ xt, where sj ∈ S = {1, 2, . . . , p}; and

I J and T are the sets of parent and terminal nodes,
respectively.

5

Regression Trees
Mathematical Representation

Notation:

I number of terminal nodes (regions, leaves) K and N parent
nodes;

I different regions denoted as R1, . . . ,RK ;

I root node at position 0;

I parent node at position j has two split (child) nodes at
positions 2j + 1 and 2j + 2;

I each parent node has a threshold (split) variable
associated, xsjt ∈ xt, where sj ∈ S = {1, 2, . . . , p}; and

I J and T are the sets of parent and terminal nodes,
respectively.

5

Regression Trees
Mathematical Representation

Notation:

I number of terminal nodes (regions, leaves) K and N parent
nodes;

I different regions denoted as R1, . . . ,RK ;

I root node at position 0;

I parent node at position j has two split (child) nodes at
positions 2j + 1 and 2j + 2;

I each parent node has a threshold (split) variable
associated, xsjt ∈ xt, where sj ∈ S = {1, 2, . . . , p}; and

I J and T are the sets of parent and terminal nodes,
respectively.

5

Regression Trees
Mathematical Representation

Notation:

I number of terminal nodes (regions, leaves) K and N parent
nodes;

I different regions denoted as R1, . . . ,RK ;

I root node at position 0;

I parent node at position j has two split (child) nodes at
positions 2j + 1 and 2j + 2;

I each parent node has a threshold (split) variable
associated, xsjt ∈ xt, where sj ∈ S = {1, 2, . . . , p}; and

I J and T are the sets of parent and terminal nodes,
respectively.

5

Regression Trees
Mathematical Representation

Notation:

I number of terminal nodes (regions, leaves) K and N parent
nodes;

I different regions denoted as R1, . . . ,RK ;

I root node at position 0;

I parent node at position j has two split (child) nodes at
positions 2j + 1 and 2j + 2;

I each parent node has a threshold (split) variable
associated, xsjt ∈ xt, where sj ∈ S = {1, 2, . . . , p}; and

I J and T are the sets of parent and terminal nodes,
respectively.

5

Regression Trees
Mathematical Representation

yt = HJT(xt;ψ) + ut =
K∑
i=1

βiI(xt ∈ Ri) + ut =
∑
i∈T

βiBJi (xt;θi) + ut

BJi (xt;θi) =
∏
j∈J

I(xsj ,t; cj)
ni,j(1+ni,j)

2

[
1− I(xsj ,t; cj)

](1−ni,j)(1+ni,j)

,

I(xsj ,t; cj) =

{
1 ifxsj ,t ≤ cj
0 otherwise,

ni,j =


−1 if the path to leaf i does not include parent node j;

0 if the path to leaf i include the right-hand child of parent node j;

1 if the path to leaf i include the left-hand child of parent node j.

I Ji: set of indexes of parent nodes included in the path to leaf i.

I θi = {ck} such that k ∈ Ji, i ∈ T e
∑

j∈JBJi (xt;θj) = 1.

6

Regression Trees
Recursive Partitioning

Idea:

I Choose the split variable xj and the threshold c in order to
reduce the squared errors.

I For each split, two new regions:

R1 = {x|xj < x} and R2 = {x|xj ≥ x}

I Recursive partitions are created until the total sum of
squares is bellow a certain pre-specified value or the
number of observations in each region reached a minimum
value.

7

Regression Trees
Recursive Partitioning

Idea:

I Choose the split variable xj and the threshold c in order to
reduce the squared errors.

I For each split, two new regions:

R1 = {x|xj < x} and R2 = {x|xj ≥ x}

I Recursive partitions are created until the total sum of
squares is bellow a certain pre-specified value or the
number of observations in each region reached a minimum
value.

7

Regression Trees
Recursive Partitioning

Idea:

I Choose the split variable xj and the threshold c in order to
reduce the squared errors.

I For each split, two new regions:

R1 = {x|xj < x} and R2 = {x|xj ≥ x}

I Recursive partitions are created until the total sum of
squares is bellow a certain pre-specified value or the
number of observations in each region reached a minimum
value.

7

Regression Trees
Recursive Partitioning: Example

308 8. Tree-Based Methods

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X

Y

2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

FIGURE 8.3. Top Left: A partition of two-dimensional feature space that could
not result from recursive binary splitting. Top Right: The output of recursive
binary splitting on a two-dimensional example. Bottom Left: A tree corresponding
to the partition in the top right panel. Bottom Right: A perspective plot of the
prediction surface corresponding to that tree.

Therefore, a better strategy is to grow a very large tree T0, and then
prune it back in order to obtain a subtree. How do we determine the best prune

subtreeway to prune the tree? Intuitively, our goal is to select a subtree that
leads to the lowest test error rate. Given a subtree, we can estimate its
test error using cross-validation or the validation set approach. However,
estimating the cross-validation error for every possible subtree would be too
cumbersome, since there is an extremely large number of possible subtrees.
Instead, we need a way to select a small set of subtrees for consideration.

Cost complexity pruning—also known as weakest link pruning—gives us
cost
complexity
pruning

weakest link
pruning

a way to do just this. Rather than considering every possible subtree, we
consider a sequence of trees indexed by a nonnegative tuning parameter α.

8

Regression Trees
Pruning

Idea:

I Grow a large tree T0 and prune the leaves in order to
reduce complexity.

I The degree of pruning is controlled by an user-defined
parameter α.

I For each tree T ⊂ T0, define the loss function

Cα(T) = sum of squared errors + αK,

where K is the number of leaves (regions) of T .

I α is selected by cross-validation.

9

Regression Trees
Pruning

Idea:

I Grow a large tree T0 and prune the leaves in order to
reduce complexity.

I The degree of pruning is controlled by an user-defined
parameter α.

I For each tree T ⊂ T0, define the loss function

Cα(T) = sum of squared errors + αK,

where K is the number of leaves (regions) of T .

I α is selected by cross-validation.

9

Regression Trees
Pruning

Idea:

I Grow a large tree T0 and prune the leaves in order to
reduce complexity.

I The degree of pruning is controlled by an user-defined
parameter α.

I For each tree T ⊂ T0, define the loss function

Cα(T) = sum of squared errors + αK,

where K is the number of leaves (regions) of T .

I α is selected by cross-validation.

9

Regression Trees
Pruning

Idea:

I Grow a large tree T0 and prune the leaves in order to
reduce complexity.

I The degree of pruning is controlled by an user-defined
parameter α.

I For each tree T ⊂ T0, define the loss function

Cα(T) = sum of squared errors + αK,

where K is the number of leaves (regions) of T .

I α is selected by cross-validation.

9

Regression Trees
Pruning: Example310 8. Tree-Based Methods

|
Years < 4.5

RBI < 60.5

Putouts < 82

Years < 3.5

Years < 3.5

Hits < 117.5

Walks < 43.5
Runs < 47.5

Walks < 52.5

RBI < 80.5
Years < 6.5

5.487

6.407 6.549

4.622 5.183
5.394 6.189

6.015 5.571

6.459 7.007
7.289

FIGURE 8.4. Regression tree analysis for the Hitters data. The unpruned tree
that results from top-down greedy splitting on the training data is shown.

Figures 8.4 and 8.5 display the results of fitting and pruning a regression
tree on the Hitters data, using nine of the features. First, we randomly
divided the data set in half, yielding 132 observations in the training set
and 131 observations in the test set. We then built a large regression tree
on the training data and varied α in (8.4) in order to create subtrees with
different numbers of terminal nodes. Finally, we performed six-fold cross-
validation in order to estimate the cross-validated MSE of the trees as
a function of α. (We chose to perform six-fold cross-validation because
132 is an exact multiple of six.) The unpruned regression tree is shown
in Figure 8.4. The green curve in Figure 8.5 shows the CV error as a
function of the number of leaves,2 while the orange curve indicates the
test error. Also shown are standard error bars around the estimated errors.
For reference, the training error curve is shown in black. The CV error
is a reasonable approximation of the test error: the CV error takes on its

2Although CV error is computed as a function of α, it is convenient to display the
result as a function of |T |, the number of leaves; this is based on the relationship between
α and |T | in the original tree grown to all the training data.

10

Regression Trees
Pruning: Example

8.1 The Basics of Decision Trees 311

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tree Size

M
ea

n
S

qu
ar

ed
 E

rr
or

Training
Cross−Validation
Test

FIGURE 8.5. Regression tree analysis for the Hitters data. The training,
cross-validation, and test MSE are shown as a function of the number of termi-
nal nodes in the pruned tree. Standard error bands are displayed. The minimum
cross-validation error occurs at a tree size of three.

minimum for a three-node tree, while the test error also dips down at the
three-node tree (though it takes on its lowest value at the ten-node tree).
The pruned tree containing three terminal nodes is shown in Figure 8.1.

8.1.2 Classification Trees

A classification tree is very similar to a regression tree, except that it is
classification
treeused to predict a qualitative response rather than a quantitative one. Re-

call that for a regression tree, the predicted response for an observation is
given by the mean response of the training observations that belong to the
same terminal node. In contrast, for a classification tree, we predict that
each observation belongs to the most commonly occurring class of training
observations in the region to which it belongs. In interpreting the results of
a classification tree, we are often interested not only in the class prediction
corresponding to a particular terminal node region, but also in the class
proportions among the training observations that fall into that region.

The task of growing a classification tree is quite similar to the task of
growing a regression tree. Just as in the regression setting, we use recursive
binary splitting to grow a classification tree. However, in the classification
setting, RSS cannot be used as a criterion for making the binary splits.
A natural alternative to RSS is the classification error rate. Since we plan

classification
error rateto assign an observation in a given region to the most commonly occurring

class of training observations in that region, the classification error rate is
simply the fraction of the training observations in that region that do not
belong to the most common class:

11

Boosting Regression Trees

12

Introduction to Boosting

I Boosting is a greedy algorithm for additive models.

– A greedy algorithm is an algorithmic paradigm that follows the
problem solving heuristic of making the locally optimal choice at
each stage with the hope of finding a global optimum.

– In many problems, a greedy strategy does not produce an
optimal solution, but may yield locally optimal solutions that
approximate a global optimal solution in a reasonable time.

– Additive models:

yt = f(xt) + ut =

M∑
m=1

βmfm(xt) + ut,

where:

I yt: dependent variable;
I xt ∈ Rp: vector of explanatory variables;
I ut: random error;
I fm(xt): basis function or weak learner.

I Origin of the method: classification problems.

13

Introduction to Boosting

I Boosting is a greedy algorithm for additive models.
– A greedy algorithm is an algorithmic paradigm that follows the

problem solving heuristic of making the locally optimal choice at
each stage with the hope of finding a global optimum.

– In many problems, a greedy strategy does not produce an
optimal solution, but may yield locally optimal solutions that
approximate a global optimal solution in a reasonable time.

– Additive models:

yt = f(xt) + ut =

M∑
m=1

βmfm(xt) + ut,

where:

I yt: dependent variable;
I xt ∈ Rp: vector of explanatory variables;
I ut: random error;
I fm(xt): basis function or weak learner.

I Origin of the method: classification problems.

13

Introduction to Boosting

I Boosting is a greedy algorithm for additive models.
– A greedy algorithm is an algorithmic paradigm that follows the

problem solving heuristic of making the locally optimal choice at
each stage with the hope of finding a global optimum.

– In many problems, a greedy strategy does not produce an
optimal solution, but may yield locally optimal solutions that
approximate a global optimal solution in a reasonable time.

– Additive models:

yt = f(xt) + ut =

M∑
m=1

βmfm(xt) + ut,

where:

I yt: dependent variable;
I xt ∈ Rp: vector of explanatory variables;
I ut: random error;
I fm(xt): basis function or weak learner.

I Origin of the method: classification problems.

13

Introduction to Boosting

I Boosting is a greedy algorithm for additive models.
– A greedy algorithm is an algorithmic paradigm that follows the

problem solving heuristic of making the locally optimal choice at
each stage with the hope of finding a global optimum.

– In many problems, a greedy strategy does not produce an
optimal solution, but may yield locally optimal solutions that
approximate a global optimal solution in a reasonable time.

– Additive models:

yt = f(xt) + ut =
M∑

m=1

βmfm(xt) + ut,

where:

I yt: dependent variable;
I xt ∈ Rp: vector of explanatory variables;
I ut: random error;
I fm(xt): basis function or weak learner.

I Origin of the method: classification problems.

13

Introduction to Boosting

I Boosting is a greedy algorithm for additive models.
– A greedy algorithm is an algorithmic paradigm that follows the

problem solving heuristic of making the locally optimal choice at
each stage with the hope of finding a global optimum.

– In many problems, a greedy strategy does not produce an
optimal solution, but may yield locally optimal solutions that
approximate a global optimal solution in a reasonable time.

– Additive models:

yt = f(xt) + ut =
M∑

m=1

βmfm(xt) + ut,

where:

I yt: dependent variable;
I xt ∈ Rp: vector of explanatory variables;
I ut: random error;
I fm(xt): basis function or weak learner.

I Origin of the method: classification problems.

13

Introduction to Boosting

I The goal is to estimate the optimal function f∗, defined as

f∗ := arg min
f

E
[
L(Y , f(X))

]
,

where:
– Y = (y1, . . . , yt)

′

– X = (x1, . . . ,xp) and xi = (xi1, . . . , xiT)′ and
– L(·, ·) is a loss function.

I We consider just the quadratic loss: L2-Boosting.

I Therefore, the goal is to estimate E(Y |X).

14

Introduction to Boosting

I The goal is to estimate the optimal function f∗, defined as

f∗ := arg min
f

E
[
L(Y , f(X))

]
,

where:
– Y = (y1, . . . , yt)

′

– X = (x1, . . . ,xp) and xi = (xi1, . . . , xiT)′ and
– L(·, ·) is a loss function.

I We consider just the quadratic loss: L2-Boosting.

I Therefore, the goal is to estimate E(Y |X).

14

Introduction to Boosting

I The goal is to estimate the optimal function f∗, defined as

f∗ := arg min
f

E
[
L(Y , f(X))

]
,

where:
– Y = (y1, . . . , yt)

′

– X = (x1, . . . ,xp) and xi = (xi1, . . . , xiT)′ and
– L(·, ·) is a loss function.

I We consider just the quadratic loss: L2-Boosting.

I Therefore, the goal is to estimate E(Y |X).

14

Introduction to Boosting

I In practice, the optimization problem has the following
form:

f̂ = arg min
f

1

T

T∑
t=1

L(yt, f(xt))︸ ︷︷ ︸
:=R

,

I For quadratic loss:

R =
1

T

T∑
t=1

[
yt − f(xt)

]2
.

15

Introduction to Boosting

I In practice, the optimization problem has the following
form:

f̂ = arg min
f

1

T

T∑
t=1

L(yt, f(xt))︸ ︷︷ ︸
:=R

,

I For quadratic loss:

R =
1

T

T∑
t=1

[
yt − f(xt)

]2
.

15

Properties

I Easy to adjust for different choices of loss functions.

I Variable selection.

I Useful when p >> T . In this case,

f∗ :=

p∑
i=1

fi(xit).

I Robust to multi-collinearity.

I Optimizes the predictive power.

16

Properties

I Easy to adjust for different choices of loss functions.

I Variable selection.

I Useful when p >> T . In this case,

f∗ :=

p∑
i=1

fi(xit).

I Robust to multi-collinearity.

I Optimizes the predictive power.

16

Properties

I Easy to adjust for different choices of loss functions.

I Variable selection.

I Useful when p >> T . In this case,

f∗ :=

p∑
i=1

fi(xit).

I Robust to multi-collinearity.

I Optimizes the predictive power.

16

Properties

I Easy to adjust for different choices of loss functions.

I Variable selection.

I Useful when p >> T . In this case,

f∗ :=

p∑
i=1

fi(xit).

I Robust to multi-collinearity.

I Optimizes the predictive power.

16

Properties

I Easy to adjust for different choices of loss functions.

I Variable selection.

I Useful when p >> T . In this case,

f∗ :=

p∑
i=1

fi(xit).

I Robust to multi-collinearity.

I Optimizes the predictive power.

16

Gradient Boosting

Algorithm:

1. Initialize a T -dimensional vector f̂
[0]

with some value. Set
j = 0 and choose the weak learners. Set the number of
learners to p.

2. Set j = j + 1 and compute

− ∂

∂f
L(Y ,f) and f̂

[j−1]
(xt), t = 1, . . . , T.

Write

U [j−1] =
[
U

[j−1]
t

]
t=1,...,T

:=

− ∂

∂f
L(Y ,f)

∣∣∣∣∣
Y =yt,f=f̂ [j−1](xt)


t=1,...,T

17

Gradient Boosting

Algorithm (continuation):

3. Compute U [j−1] and choose the learner that best fits

U [j−1]. Set Û
[j−1]

as the fitted values of the best model.

4. Update

f̂
[j]

= f̂
[j−1]

+ νÛ
[j−1]

, 0 < ν ≤ 1.

5. Repeat steps 2-4 until the maximum number of iterations
is reached.

18

Componentwise Algorithm

I One learner for each covariate.

U [j−1] ∼ x1

U [j−1] ∼ x2

U [j−1] ∼ x3

...

U [j−1] ∼ xk −→ Best Model −→ Û
[j−1]

...

U [j−1] ∼ xp

19

Example

Introduction to Gradient Boosting

Definition and Properties of Gradient boosting

Simple example

I In case of Gaussian regression, gradient boosting is equivalent to
iteratively re-fitting the residuals of the model.

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

−0.2 −0.1 0.0 0.1 0.2

−0.10

−0.05

0.00

0.05

0.10

x

y

m = 0

y = (0.5 − 0.9 e−50 x2) x + 0.02 ε

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

−0.2 −0.1 0.0 0.1 0.2

−0.10

−0.05

0.00

0.05

0.10

x

R
e

si
d

u
a

ls

Residuals

m = 0

21/35
20

Example

Introduction to Gradient Boosting

Definition and Properties of Gradient boosting

Simple example

I In case of Gaussian regression, gradient boosting is equivalent to
iteratively re-fitting the residuals of the model.

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

−0.2 −0.1 0.0 0.1 0.2

−0.10

−0.05

0.00

0.05

0.10

y = (0.5 − 0.9 e−50 x2) x + 0.02 ε

x

y

m = 1

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

−0.2 −0.1 0.0 0.1 0.2

−0.10

−0.05

0.00

0.05

0.10

Residuals

x

R
e

s
id

u
a

ls

m = 1

22/35
21

Example

Introduction to Gradient Boosting

Definition and Properties of Gradient boosting

Simple example

I In case of Gaussian regression, gradient boosting is equivalent to
iteratively re-fitting the residuals of the model.

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

−0.2 −0.1 0.0 0.1 0.2

−0.10

−0.05

0.00

0.05

0.10

y = (0.5 − 0.9 e−50 x2) x + 0.02 ε

x

y

m = 2

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

−0.2 −0.1 0.0 0.1 0.2

−0.10

−0.05

0.00

0.05

0.10

Residuals

x

R
e

s
id

u
a

ls

m = 2

23/35
22

Example

Introduction to Gradient Boosting

Definition and Properties of Gradient boosting

Simple example

I In case of Gaussian regression, gradient boosting is equivalent to
iteratively re-fitting the residuals of the model.

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

−0.2 −0.1 0.0 0.1 0.2

−0.10

−0.05

0.00

0.05

0.10

y = (0.5 − 0.9 e−50 x2) x + 0.02 ε

x

y

m = 3

●

●

●

●

●
●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

−0.2 −0.1 0.0 0.1 0.2

−0.10

−0.05

0.00

0.05

0.10

Residuals

x

R
e

s
id

u
a

ls

m = 3

24/35
23

Example

Introduction to Gradient Boosting

Definition and Properties of Gradient boosting

Simple example

I In case of Gaussian regression, gradient boosting is equivalent to
iteratively re-fitting the residuals of the model.

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

−0.2 −0.1 0.0 0.1 0.2

−0.10

−0.05

0.00

0.05

0.10

y = (0.5 − 0.9 e−50 x2) x + 0.02 ε

x

y

m = 10

●

●

●

●

●
●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

−0.2 −0.1 0.0 0.1 0.2

−0.10

−0.05

0.00

0.05

0.10

Residuals

x

R
e

si
d

u
a

ls

m = 10

25/35
24

Example

Introduction to Gradient Boosting

Definition and Properties of Gradient boosting

Simple example

I In case of Gaussian regression, gradient boosting is equivalent to
iteratively re-fitting the residuals of the model.

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

−0.2 −0.1 0.0 0.1 0.2

−0.10

−0.05

0.00

0.05

0.10

y = (0.5 − 0.9 e−50 x2) x + 0.02 ε

x

y

m = 20

●

●

●

●

●
●●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

−0.2 −0.1 0.0 0.1 0.2

−0.10

−0.05

0.00

0.05

0.10

Residuals

x

R
e

si
d

u
a

ls

m = 20

26/3525

Example

Introduction to Gradient Boosting

Definition and Properties of Gradient boosting

Simple example

I In case of Gaussian regression, gradient boosting is equivalent to
iteratively re-fitting the residuals of the model.

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

−0.2 −0.1 0.0 0.1 0.2

−0.10

−0.05

0.00

0.05

0.10

y = (0.5 − 0.9 e−50 x2) x + 0.02 ε

x

y

m = 30

●

●

●

●

●
●●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

−0.2 −0.1 0.0 0.1 0.2

−0.10

−0.05

0.00

0.05

0.10

Residuals

x

R
e

s
id

u
a

ls

m = 30

27/35
26

Example

Introduction to Gradient Boosting

Definition and Properties of Gradient boosting

Simple example

I In case of Gaussian regression, gradient boosting is equivalent to
iteratively re-fitting the residuals of the model.

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

−0.2 −0.1 0.0 0.1 0.2

−0.10

−0.05

0.00

0.05

0.10

y = (0.5 − 0.9 e−50 x2) x + 0.02 ε

x

y

m = 150

●

●

●

●

●●●

●

●

●
●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

−0.2 −0.1 0.0 0.1 0.2

−0.10

−0.05

0.00

0.05

0.10

Residuals

x

R
e

s
id

u
a

ls

m = 150

28/3527

Gradient Boosting Properties

I It is clear from step 4 that

f̂
[J]

= f̂
[0]

+ νÛ
[0]

+ · · ·+ νÛ
[J−1]

.

I The structure of the prediction function will depend on the
choice of the weak learners.

– Linear learners −→ linear function
– Smooth learners −→ smooth function

I Variable selection

I Useful when p >> T .
I If J −→∞, the algorithm will select irrelevant regressors.

– Solution: early stopping with cross-validation or information
criteria.

28

Example: Linear Learners

Set-up:

I Three regressors: x1, x2, x3.

I Three linear learners.

I J = 5

I Hypothetical solution: x1 selected at iterations 1, 2 and 5
and x2 selected at iterations 3 and 4.

f̂
[J]

= f̂
[0]

+ νÛ
[0]

+ νÛ
[1]

+ νÛ
[2]

+ νÛ
[3]

+ νÛ
[4]

= β̂
[0]

+ νβ̂
[0]

1 x1 + νβ̂
[1]

1 x1 + νβ̂
[2]

3 x3 + νβ̂
[3]

3 x3 + νβ̂
[4]

1 x1

= β̂
[0]

+ ν

(
β̂

[0]

1 + β̂
[1]

1 + β̂
[4]

1

)
x1 + ν

(
β̂

[2]

3 + β̂
[3]

3

)
x3

= β̂
[0]

+ β̂1x1 + β̂3x3.

29

Boosting Regression Trees

Algorithm:

1. Initialize f0(x) = arg min
c

∑T
t=1 L(yt, c).

2. For m = 1, . . . ,M :
2.1 For t = 1, . . . , T , compute:

rtm = −
[
∂L(yt, f(xt))

∂f(xt)

]
f=fm−1

2.2 Fit a regression tree for rtm giving terminal regions (leaves)
Rjm, j = 1, . . . ,Km.

2.3 For j = 1, 2, . . . ,Km, compute

cjm = arg min
c

∑
xt∈Rjm

L(yt, fm−1(xt) + c)

2.4 Update fm(x) = fm−1(x) + ν
∑Km

j=1 cjmI(x ∈ Rjm)

3. Output: f̂(x) = fM (x)

30

Boosting Regression Trees

I Note that for square loss:

∂L(yt, f(xt))

∂f(xt)
= yt − f(xt)

I What is the right size of the trees (Km)?
– Simple strategy: Km = K, ∀m, K small.
– The larger is K, the larger is the interaction among different

variables. For example, if K = 2 there is no interaction.
– Typically, in empirical works 4 ≥ K ≤ 8.

I What are the values of M and ν?
– ν (0 < ν < 1) is the learning rate.
– Smaller values of ν (more shrinkage) result in larger training risk

for the same number of iterations M .
– Both ν and M control the prediction risk in the training data

and do not operate independently.
– Typically, ν is small (ν < 0.1) and M is chosen by early stopping.

31

Regression Trees
Boosting and Relative Importance of Predictor Variables

I Measure of relative importance of the ith covariate for a
single tree T :

Ii(T) =

N∑
j=1

î2(sj = i),

where N = K − 1 is the number of internal nodes and î2(·)
is the estimated improvement in squared error risk over
that for a constant fit over the entire region.

I For boosted trees:

Ii =

M∑
m=1

Ii(Tm).

32

Boosting Regression Trees
Example: California Housing

I Reference: Hastie, Tibshirani and Friedman (2009), Section
10.14.1 and Pace and Barry (1997,Stat&Prob Letters)

I Data is available form Carnegie-Mellon Statlib repository.

I The dataset consists of aggregated data from 20, 460
neighborhood (1990 census block groups) in California.

I The dependent variable y is the median house value in each
neighborhood measures in units of $100, 000.

I Predictors are demographic variables such as median income
(MedInc), housing density as reflected by the number of houses
(House), and average occupancy in each house (AveOccup);
location of each neighborhood (longitude and latitute); and
several quantities reflecting the properties of the houses in the
neighborhood such as average number of room AveRooms and
bedrooms (AvgBedrms). Total of eight predictors, all numeric.

33

Boosting Regression Trees
Example: California Housing

I K = 6 and ν = 0.1.

I Huber loss to control for outliers:

L(yt, f(xt)) =

{
1
2

[
yt − f(xt)

]2
if |yt − f(xt)| ≤ δ

δ|yt − f(xt)| − 1
2δ

2 otherwise.

34

Boosting Regression Trees
Example: California Housing

I For the Huber loss:

∂L(yt, f(xt))

∂f(xt)
=

{
yt − f(xt) for |yi − f(xt)| ≤ δ
δsign[yt − f(xt)] otherwise,

where δ = α− quantile[|yi − f(xt)|].

35

Boosting Regression Trees
Example: California Housing

Average-absolute error as a function of iterations

372 10. Boosting and Additive Trees

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

Iterations M

A
bs

ol
ut

e
E

rr
or

Training and Test Absolute Error

Train Error
Test Error

FIGURE 10.13. Average-absolute error as a function of number of iterations
for the California housing data.

Figure 10.14 displays the relative variable importances for each of the
eight predictor variables. Not surprisingly, median income in the neigh-
borhood is the most relevant predictor. Longitude, latitude, and average
occupancy all have roughly half the relevance of income, whereas the others
are somewhat less influential.

Figure 10.15 shows single-variable partial dependence plots on the most
relevant nonlocation predictors. Note that the plots are not strictly smooth.
This is a consequence of using tree-based models. Decision trees produce
discontinuous piecewise constant models (10.25). This carries over to sums
of trees (10.28), with of course many more pieces. Unlike most of the meth-
ods discussed in this book, there is no smoothness constraint imposed on
the result. Arbitrarily sharp discontinuities can be modeled. The fact that
these curves generally exhibit a smooth trend is because that is what is
estimated to best predict the response for this problem. This is often the
case.

The hash marks at the base of each plot delineate the deciles of the
data distribution of the corresponding variables. Note that here the data
density is lower near the edges, especially for larger values. This causes the
curves to be somewhat less well determined in those regions. The vertical
scales of the plots are the same, and give a visual comparison of the relative
importance of the different variables.

The partial dependence of median house value on median income is
monotonic increasing, being nearly linear over the main body of data. House
value is generally monotonic decreasing with increasing average occupancy,
except perhaps for average occupancy rates less than one. Median house

36

Boosting Regression Trees
Example: California Housing

Relative variable importance10.14 Illustrations 373

MedInc

Longitude

AveOccup

Latitude

HouseAge

AveRooms

AveBedrms

Population

0 20 40 60 80 100

Relative importance

FIGURE 10.14. Relative importance of the predictors for the California housing
data.

value has a nonmonotonic partial dependence on average number of rooms.
It has a minimum at approximately three rooms and is increasing both for
smaller and larger values.

Median house value is seen to have a very weak partial dependence on
house age that is inconsistent with its importance ranking (Figure 10.14).
This suggests that this weak main effect may be masking stronger interac-
tion effects with other variables. Figure 10.16 shows the two-variable partial
dependence of housing value on joint values of median age and average oc-
cupancy. An interaction between these two variables is apparent. For values
of average occupancy greater than two, house value is nearly independent
of median age, whereas for values less than two there is a strong dependence
on age.

Figure 10.17 shows the two-variable partial dependence of the fitted
model on joint values of longitude and latitude, displayed as a shaded
contour plot. There is clearly a very strong dependence of median house
value on the neighborhood location in California. Note that Figure 10.17 is
not a plot of house value versus location ignoring the effects of the other
predictors (10.49). Like all partial dependence plots, it represents the effect
of location after accounting for the effects of the other neighborhood and
house attributes (10.47). It can be viewed as representing an extra premium
one pays for location. This premium is seen to be relatively large near the
Pacific coast especially in the Bay Area and Los Angeles–San Diego re-

37

Boosting Regression Trees
Example: California Housing

Partial dependence of housing value on nonlocation variables
374 10. Boosting and Additive Trees

MedInc

P
ar

tia
l D

ep
en

de
nc

e

2 4 6 8 10

-0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

AveOccup

P
ar

tia
l D

ep
en

de
nc

e

2 3 4 5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

HouseAge

P
ar

tia
l D

ep
en

de
nc

e

10 20 30 40 50

-1
.0

-0
.5

0.
0

0.
5

1.
0

AveRooms

P
ar

tia
l D

ep
en

de
nc

e

4 6 8 10

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

FIGURE 10.15. Partial dependence of housing value on the nonlocation vari-
ables for the California housing data. The red ticks at the base of the plot are
deciles of the input variables.

2

3

4

5
10

20

30

40

50

0.0

0.5

1.0

AveOccup

HouseAge

FIGURE 10.16. Partial dependence of house value on median age and aver-
age occupancy. There appears to be a strong interaction effect between these two
variables.

38

Boosting Regression Trees
Example: California Housing

Partial dependence of house value on median age and average occupancy

374 10. Boosting and Additive Trees

MedInc

P
ar

tia
l D

ep
en

de
nc

e

2 4 6 8 10

-0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

AveOccup

P
ar

tia
l D

ep
en

de
nc

e

2 3 4 5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

HouseAge

P
ar

tia
l D

ep
en

de
nc

e

10 20 30 40 50

-1
.0

-0
.5

0.
0

0.
5

1.
0

AveRooms

P
ar

tia
l D

ep
en

de
nc

e

4 6 8 10

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

FIGURE 10.15. Partial dependence of housing value on the nonlocation vari-
ables for the California housing data. The red ticks at the base of the plot are
deciles of the input variables.

2

3

4

5
10

20

30

40

50

0.0

0.5

1.0

AveOccup

HouseAge

FIGURE 10.16. Partial dependence of house value on median age and aver-
age occupancy. There appears to be a strong interaction effect between these two
variables.

39

Boosting Regression Trees
Example: California Housing

Partial dependence of house value on location

10.14 Illustrations 375

−124 −122 −120 −118 −116 −114

34
36

38
40

42

Longitude

La
tit

ud
e

−1.0

−0.5

 0.0

 0.5

 1.0

FIGURE 10.17. Partial dependence of median house value on location in Cal-
ifornia. One unit is $100, 000, at 1990 prices, and the values plotted are relative
to the overall median of $180, 000.

gions. In the northern, central valley, and southeastern desert regions of
California, location costs considerably less.

10.14.2 New Zealand Fish

Plant and animal ecologists use regression models to predict species pres-
ence, abundance and richness as a function of environmental variables.
Although for many years simple linear and parametric models were popu-
lar, recent literature shows increasing interest in more sophisticated mod-
els such as generalized additive models (Section 9.1, GAM), multivariate
adaptive regression splines (Section 9.4, MARS) and boosted regression
trees (Leathwick et al., 2005; Leathwick et al., 2006). Here we model the

40

Bagging Regression Trees: Random Forests

41

What is Bagging?

I Bagging = Bootstrap Aggregating

I Introduced by Breiman(1996, ML) to reduce the variance
of a predictor.

I Let’s consider a regression setup where data is collected as

Zt = (yt,x
′
t), t = 1, . . . , T.

I Let
θ̂T (x) = hT (Z1, . . . ,ZT)(x)

be an estimator of E(y|x).

42

What is Bagging?

I Bagging = Bootstrap Aggregating

I Introduced by Breiman(1996, ML) to reduce the variance
of a predictor.

I Let’s consider a regression setup where data is collected as

Zt = (yt,x
′
t), t = 1, . . . , T.

I Let
θ̂T (x) = hT (Z1, . . . ,ZT)(x)

be an estimator of E(y|x).

42

What is Bagging?

I Bagging = Bootstrap Aggregating

I Introduced by Breiman(1996, ML) to reduce the variance
of a predictor.

I Let’s consider a regression setup where data is collected as

Zt = (yt,x
′
t), t = 1, . . . , T.

I Let
θ̂T (x) = hT (Z1, . . . ,ZT)(x)

be an estimator of E(y|x).

42

What is Bagging?

I Bagging = Bootstrap Aggregating

I Introduced by Breiman(1996, ML) to reduce the variance
of a predictor.

I Let’s consider a regression setup where data is collected as

Zt = (yt,x
′
t), t = 1, . . . , T.

I Let
θ̂T (x) = hT (Z1, . . . ,ZT)(x)

be an estimator of E(y|x).

42

What is Bagging?
The Bagging Algorithm

1. Construct a bootstrap sample

Z∗t = (y∗t ,x
∗′
t), t = 1, . . . , T.

according to the empirical distribution of the pairs (yt,xt),
t = 1, . . . , T .

2. Compute the bootstrapped predictor θ̂∗T (x) by the plug-in
principle; that is,

θ̂∗T (x) = hT (Z∗1, . . . ,Z
∗
T)(x).

3. The bagged predictor is

θ̂BT (x) = E∗
[
θ̂∗T (x)

]

43

What is Bagging?
The Bagging Algorithm

1. Construct a bootstrap sample

Z∗t = (y∗t ,x
∗′
t), t = 1, . . . , T.

according to the empirical distribution of the pairs (yt,xt),
t = 1, . . . , T .

2. Compute the bootstrapped predictor θ̂∗T (x) by the plug-in
principle; that is,

θ̂∗T (x) = hT (Z∗1, . . . ,Z
∗
T)(x).

3. The bagged predictor is

θ̂BT (x) = E∗
[
θ̂∗T (x)

]

43

What is Bagging?
The Bagging Algorithm

1. Construct a bootstrap sample

Z∗t = (y∗t ,x
∗′
t), t = 1, . . . , T.

according to the empirical distribution of the pairs (yt,xt),
t = 1, . . . , T .

2. Compute the bootstrapped predictor θ̂∗T (x) by the plug-in
principle; that is,

θ̂∗T (x) = hT (Z∗1, . . . ,Z
∗
T)(x).

3. The bagged predictor is

θ̂BT (x) = E∗
[
θ̂∗T (x)

]

43

What is Bagging?

I In practice the expectation E∗
[
θ̂∗T (x)

]
is computed by

Monte Carlo:

– For each bootstrap simulation j, j = 1, . . . , B

θ̂∗T,(j)(x) = hn(Z∗1,(j), . . . ,Z
∗
T,(j))(x).

– Therefore,

θ̂∗T (x) ≈ 1

B

B∑
j=1

θ̂∗T,(j)(x).

I There can be a drastic variance reduction if the predictor is
unstable.

44

What is Bagging?

I In practice the expectation E∗
[
θ̂∗T (x)

]
is computed by

Monte Carlo:
– For each bootstrap simulation j, j = 1, . . . , B

θ̂∗T,(j)(x) = hn(Z∗1,(j), . . . ,Z
∗
T,(j))(x).

– Therefore,

θ̂∗T (x) ≈ 1

B

B∑
j=1

θ̂∗T,(j)(x).

I There can be a drastic variance reduction if the predictor is
unstable.

44

What is Bagging?

I In practice the expectation E∗
[
θ̂∗T (x)

]
is computed by

Monte Carlo:
– For each bootstrap simulation j, j = 1, . . . , B

θ̂∗T,(j)(x) = hn(Z∗1,(j), . . . ,Z
∗
T,(j))(x).

– Therefore,

θ̂∗T (x) ≈ 1

B

B∑
j=1

θ̂∗T,(j)(x).

I There can be a drastic variance reduction if the predictor is
unstable.

44

What is Bagging?

I In practice the expectation E∗
[
θ̂∗T (x)

]
is computed by

Monte Carlo:
– For each bootstrap simulation j, j = 1, . . . , B

θ̂∗T,(j)(x) = hn(Z∗1,(j), . . . ,Z
∗
T,(j))(x).

– Therefore,

θ̂∗T (x) ≈ 1

B

B∑
j=1

θ̂∗T,(j)(x).

I There can be a drastic variance reduction if the predictor is
unstable.

44

What is Bagging?

Stability of a predictor

A statistic
θ̂T (x) = hT (Z1, . . . ,ZT)(x)

is called stable at x if

θ̂n(x) = θ(x) + op(1)

as n −→∞ for some fixed value θ(x).

I Different from consistency.

I θ(x) is just a stable limit and not necessarily the parameter
of interest.

I Subset model selection via testing creates unstable
predictors.

I Bagging reduces the variance of unstable
predictors.

45

What is Bagging?

Stability of a predictor

A statistic
θ̂T (x) = hT (Z1, . . . ,ZT)(x)

is called stable at x if

θ̂n(x) = θ(x) + op(1)

as n −→∞ for some fixed value θ(x).

I Different from consistency.

I θ(x) is just a stable limit and not necessarily the parameter
of interest.

I Subset model selection via testing creates unstable
predictors.

I Bagging reduces the variance of unstable
predictors.

45

What is Bagging?

Stability of a predictor

A statistic
θ̂T (x) = hT (Z1, . . . ,ZT)(x)

is called stable at x if

θ̂n(x) = θ(x) + op(1)

as n −→∞ for some fixed value θ(x).

I Different from consistency.

I θ(x) is just a stable limit and not necessarily the parameter
of interest.

I Subset model selection via testing creates unstable
predictors.

I Bagging reduces the variance of unstable
predictors.

45

What is Bagging?

Stability of a predictor

A statistic
θ̂T (x) = hT (Z1, . . . ,ZT)(x)

is called stable at x if

θ̂n(x) = θ(x) + op(1)

as n −→∞ for some fixed value θ(x).

I Different from consistency.

I θ(x) is just a stable limit and not necessarily the parameter
of interest.

I Subset model selection via testing creates unstable
predictors.

I Bagging reduces the variance of unstable
predictors.

45

Random Forests
Bagging and Random Forests

Algorithm:
1. For b = 1, . . . , B:

1.1 Draw a bootstrap sample of size T from the original data
(sampling with replacement).

1.2 For each sample, estimate a tree Tb, using as potential split
variables a subset of q out of the p original variables randomly
chosen. The tree should grow until the minimum number of
observations in each leaf is reached. No pruning.

2. The final prediction is given as:

1

B

B∑
b=1

Tb(x),

3. B can be monitored by the Out-of-the-Bag error: for each
observation zt = (yt,x

′
t)
′, construct its random forest

predictor by averaging only those trees corresponding to
bootstrap samples in which zt did not appear.

46

Random Forests
Example: California Housing

Test average absolute error as a function of the number of trees

15.2 Definition of Random Forests 591

0 200 400 600 800 1000

0.
32

0.
34

0.
36

0.
38

0.
40

0.
42

0.
44

California Housing Data

Number of Trees

T
es

t A
ve

ra
ge

 A
bs

ol
ut

e
E

rr
or

RF m=2
RF m=6
GBM depth=4
GBM depth=6

FIGURE 15.3. Random forests compared to gradient boosting on the California
housing data. The curves represent mean absolute error on the test data as a
function of the number of trees in the models. Two random forests are shown, with
m = 2 and m = 6. The two gradient boosted models use a shrinkage parameter
ν = 0.05 in (10.41), and have interaction depths of 4 and 6. The boosted models
outperform random forests.

Figure 15.2 shows the results of a simulation3 comparing random forests
to gradient boosting on the nested spheres problem [Equation (10.2) in
Chapter 10]. Boosting easily outperforms random forests here. Notice that
smaller m is better here, although part of the reason could be that the true
decision boundary is additive.

Figure 15.3 compares random forests to boosting (with shrinkage) in a
regression problem, using the California housing data (Section 10.14.1).
Two strong features that emerge are

• Random forests stabilize at about 200 trees, while at 1000 trees boost-
ing continues to improve. Boosting is slowed down by the shrinkage,
as well as the fact that the trees are much smaller.

• Boosting outperforms random forests here. At 1000 terms, the weaker
boosting model (GBM depth 4) has a smaller error than the stronger

3Details: The random forests were fit using the R package randomForest 4.5-11,

with 500 trees. The gradient boosting models were fit using R package gbm 1.5, with

shrinkage parameter set to 0.05, and 2000 trees.

47

Sieves and Neural Networks

48

Sieve Spaces
Motivation

I Approximation of nonlinear unknown functions by the
method of sieves of Grenander (1981).

I Unlike the kernel estimator which is a local estimator, the
sieve is a global estimator in the sense that it estimates the
function of interest over its entire domain in a single step.

I Sieve estimators have several advantages:

1. Computational easiness
2. Easy to impose restrictions
3. Much easier solution under endogeneity

49

Sieve Spaces
Motivation

I Approximation of nonlinear unknown functions by the
method of sieves of Grenander (1981).

I Unlike the kernel estimator which is a local estimator, the
sieve is a global estimator in the sense that it estimates the
function of interest over its entire domain in a single step.

I Sieve estimators have several advantages:

1. Computational easiness
2. Easy to impose restrictions
3. Much easier solution under endogeneity

49

Sieve Spaces
Motivation

I Approximation of nonlinear unknown functions by the
method of sieves of Grenander (1981).

I Unlike the kernel estimator which is a local estimator, the
sieve is a global estimator in the sense that it estimates the
function of interest over its entire domain in a single step.

I Sieve estimators have several advantages:

1. Computational easiness
2. Easy to impose restrictions
3. Much easier solution under endogeneity

49

Sieve Spaces
Motivation

I Approximation of nonlinear unknown functions by the
method of sieves of Grenander (1981).

I Unlike the kernel estimator which is a local estimator, the
sieve is a global estimator in the sense that it estimates the
function of interest over its entire domain in a single step.

I Sieve estimators have several advantages:
1. Computational easiness

2. Easy to impose restrictions
3. Much easier solution under endogeneity

49

Sieve Spaces
Motivation

I Approximation of nonlinear unknown functions by the
method of sieves of Grenander (1981).

I Unlike the kernel estimator which is a local estimator, the
sieve is a global estimator in the sense that it estimates the
function of interest over its entire domain in a single step.

I Sieve estimators have several advantages:
1. Computational easiness
2. Easy to impose restrictions

3. Much easier solution under endogeneity

49

Sieve Spaces
Motivation

I Approximation of nonlinear unknown functions by the
method of sieves of Grenander (1981).

I Unlike the kernel estimator which is a local estimator, the
sieve is a global estimator in the sense that it estimates the
function of interest over its entire domain in a single step.

I Sieve estimators have several advantages:
1. Computational easiness
2. Easy to impose restrictions
3. Much easier solution under endogeneity

49

Sieve Spaces
Definition

I Consider the general nonlinear, semi-parametric model:

yi = m0(xi) + ui

= β′0xi︸ ︷︷ ︸
parametric component

+ h0(xi)︸ ︷︷ ︸
nonparametric component

+ ui,

where {ui}, i = 1, . . . , n is a sequence of random
disturbances and xi ∈ Rp is a vector of covariates.

I Let’s assume for now that E(ui|xi) = 0 and
E(u2

i |xi) = σ2(xi) <∞, for all i = 1, . . . n.

I The goal is to estimate the vector of parameters
θ0 = (β′0, h0)′ ∈ B ×H ≡ Θ, where B denotes a
finite-dimensional compact parameter space and H is an
infinite-dimensional parameter space.

50

Sieve Spaces
Definition

I Consider the general nonlinear, semi-parametric model:

yi = m0(xi) + ui

= β′0xi︸ ︷︷ ︸
parametric component

+ h0(xi)︸ ︷︷ ︸
nonparametric component

+ ui,

where {ui}, i = 1, . . . , n is a sequence of random
disturbances and xi ∈ Rp is a vector of covariates.

I Let’s assume for now that E(ui|xi) = 0 and
E(u2

i |xi) = σ2(xi) <∞, for all i = 1, . . . n.

I The goal is to estimate the vector of parameters
θ0 = (β′0, h0)′ ∈ B ×H ≡ Θ, where B denotes a
finite-dimensional compact parameter space and H is an
infinite-dimensional parameter space.

50

Sieve Spaces
Definition

I Consider the general nonlinear, semi-parametric model:

yi = m0(xi) + ui

= β′0xi︸ ︷︷ ︸
parametric component

+ h0(xi)︸ ︷︷ ︸
nonparametric component

+ ui,

where {ui}, i = 1, . . . , n is a sequence of random
disturbances and xi ∈ Rp is a vector of covariates.

I Let’s assume for now that E(ui|xi) = 0 and
E(u2

i |xi) = σ2(xi) <∞, for all i = 1, . . . n.

I The goal is to estimate the vector of parameters
θ0 = (β′0, h0)′ ∈ B ×H ≡ Θ, where B denotes a
finite-dimensional compact parameter space and H is an
infinite-dimensional parameter space.

50

Sieve Spaces
Definition

I Suppose that the infinite-dimensional space Θ is endowed
with a (pseudo-)metric d.

I A typical semi-nonparametric econometric model specifies
that there is a population criterion function Q : Θ→ R
which is uniquely maximized (or minimized) at a
(pseudo-)true parameter θ0.

I When Θ is infinite-dimensional and possibly not compact
with respect to the (pseudo-)metric d, maximizing and
empirical criterion function Q̂n over Θ may not be
well-defined.

51

Sieve Spaces
Definition

I Suppose that the infinite-dimensional space Θ is endowed
with a (pseudo-)metric d.

I A typical semi-nonparametric econometric model specifies
that there is a population criterion function Q : Θ→ R
which is uniquely maximized (or minimized) at a
(pseudo-)true parameter θ0.

I When Θ is infinite-dimensional and possibly not compact
with respect to the (pseudo-)metric d, maximizing and
empirical criterion function Q̂n over Θ may not be
well-defined.

51

Sieve Spaces
Definition

I Suppose that the infinite-dimensional space Θ is endowed
with a (pseudo-)metric d.

I A typical semi-nonparametric econometric model specifies
that there is a population criterion function Q : Θ→ R
which is uniquely maximized (or minimized) at a
(pseudo-)true parameter θ0.

I When Θ is infinite-dimensional and possibly not compact
with respect to the (pseudo-)metric d, maximizing and
empirical criterion function Q̂n over Θ may not be
well-defined.

51

Sieve Spaces
Definition

I We say that the optimization problem is well-posed if for
sequences {θk} ∈ Θ such that Q(θ0)−Q(θk)→ 0, then
d(θ0,θk)→ 0.

I The problem is ill-posed if for sequences {θk} ∈ Θ such
that Q(θ0)−Q(θk)→ 0, but d(θ0,θk) 9 0.

52

Sieve Spaces
Definition

I We say that the optimization problem is well-posed if for
sequences {θk} ∈ Θ such that Q(θ0)−Q(θk)→ 0, then
d(θ0,θk)→ 0.

I The problem is ill-posed if for sequences {θk} ∈ Θ such
that Q(θ0)−Q(θk)→ 0, but d(θ0,θk) 9 0.

52

Sieve Spaces
Definition

Key Idea

I The method of sieves provides a general approach to
resolve difficulties associated with maximizing Q̂n over Θ
by maximizing Q̂n over a sequence of approximating spaces
Θn, called Sieves.

I These spaces are less complex than Θ but are dense in Θ.

I Popular sieves are typically compact, nondecreasing
(Θn ⊆ Θn+1 ⊆ · · · ⊆ Θ) and are such that for any element
θ ∈ Θ there exists as element πnθ ∈ Θn satisfying
d(θ, πnθ)→ 0 as n→∞, where the notation πn can be
regarded as a projection mapping from Θ to Θn.

53

Sieve Spaces
Definition

Key Idea

I The method of sieves provides a general approach to
resolve difficulties associated with maximizing Q̂n over Θ
by maximizing Q̂n over a sequence of approximating spaces
Θn, called Sieves.

I These spaces are less complex than Θ but are dense in Θ.

I Popular sieves are typically compact, nondecreasing
(Θn ⊆ Θn+1 ⊆ · · · ⊆ Θ) and are such that for any element
θ ∈ Θ there exists as element πnθ ∈ Θn satisfying
d(θ, πnθ)→ 0 as n→∞, where the notation πn can be
regarded as a projection mapping from Θ to Θn.

53

Sieve Spaces
Definition

Key Idea

I The method of sieves provides a general approach to
resolve difficulties associated with maximizing Q̂n over Θ
by maximizing Q̂n over a sequence of approximating spaces
Θn, called Sieves.

I These spaces are less complex than Θ but are dense in Θ.

I Popular sieves are typically compact, nondecreasing
(Θn ⊆ Θn+1 ⊆ · · · ⊆ Θ) and are such that for any element
θ ∈ Θ there exists as element πnθ ∈ Θn satisfying
d(θ, πnθ)→ 0 as n→∞, where the notation πn can be
regarded as a projection mapping from Θ to Θn.

53

Sieve Spaces
Definition

I The approximate sieve extremum estimate, denoted by θ̂n,
is defined as an approximate maximizer of Q̂n(θ) over the
sieve space Θn:

Q̂n(θ̂n) ≥ sup
θ∈Θn

Q̂n(θ)−Op(ηn),

with ηn → 0 as n→∞.

I When ηn = 0 we call the estimator the exact sieve
extremum estimate.

54

Sieve Spaces
Definition

I The approximate sieve extremum estimate, denoted by θ̂n,
is defined as an approximate maximizer of Q̂n(θ) over the
sieve space Θn:

Q̂n(θ̂n) ≥ sup
θ∈Θn

Q̂n(θ)−Op(ηn),

with ηn → 0 as n→∞.

I When ηn = 0 we call the estimator the exact sieve
extremum estimate.

54

Nonlinear Sieve Spaces
Single Hidden Layer Neural Networks

Sigmoid Artificial Neural Network

The single hidden layer Sigmoid Artificial Neural Network
(sANN) sieve is defined as

sANN(Jn) =

γ0 +

Jn∑
j=1

αjS(γ ′jx+ γ0,j) : γj ∈ Rp, αj , γ0, γ0,j ∈ R

 .

I S : R→ R is a sigmoid “activation” function, i.e., a
bounded nondecreasing function such that lim

u→−∞
S(u) = 0

and lim
u→∞

S(u) = 1.

55

Nonlinear Sieve Spaces
Single Hidden Layer Neural Networks

I Some popular sigmoid functions:
– Heaviside: S(u) = 1(u ≥ 0);
– Logistic: S(u) = 1/[1 + exp(−u)];
– Hyperbolic tangent:
S(u) = [exp(u)− exp(−u)]/[exp(u) + exp(−u)];

– Gaussian sigmoid: S(u) = (2π)−1/2
∫ u

−∞ exp(−y2/2)dy;
– Cosine squasher:
S(u) = [1 + cos(u+ 3π/2)]/21(|u| ≤ π/2) + 1(u > π/2).

– ReLU: S(u) = uI(u > 0)

56

Empirical Example:
Equity Premium Forecasting with ML

Methods

Gu, Shihao, Bryan Kelly and Dacheng Xiu (2018). Empirical Asset Pricing via

Machine Learning. Working paper available at SSRN id 3159577.

57

Main Idea

I Model:

rt,t+1 = Et(ri,t+1) + εi,t+1

Et(ri,t+1) = g(zi,t)

where zit is a large vector of predictors:
– 91 firm characteristics (61 of which are updated annually, 13

updated quarterly and 20 updated monthly);
– 74 industry dummies
– 8 macroeconomic predictors
– Interactions between macro factors and firm characteristics.

I 30,000 stocks over a sample starting in March 1957 and
ending in December 2016 (60 years).

I ML methods: linear regression, restricted linear regression
(FF factors), partial least squares (PLS), principal
component regression (PCR), generalized linear model
(GLM), random forest (RF), Boosted Trees (GBRT),
neural networks with 1 to 5 layers (NN1–NN5).

58

Results Table 1: Monthly Out-of-sample Stock-level Prediction Performance (Percentage R2
oos)

OLS OLS-3 PLS PCR ENet GLM RF GBRT NN1 NN2 NN3 NN4 NN5

+H +H +H +H +H

All -4.60 0.16 0.18 0.28 0.09 0.19 0.27 0.30 0.35 0.38 0.39 0.37 0.35

Top 1000 -14.21 0.15 -0.10 -0.05 0.10 0.17 0.62 0.53 0.44 0.58 0.72 0.67 0.69

Bottom 1000 -2.13 0.37 0.29 0.36 0.18 0.28 0.29 0.27 0.41 0.45 0.46 0.42 0.40

O
LS-3+H

PLS
PC
R

EN
et+H

G
LM

+H

R
F

G
B
R
T+H

N
N
1

N
N
2

N
N
3

N
N
4

N
N
5

R
2 o
o
s

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
All

Top

Bottom

Note: In this table, we report monthly R2
oos for the entire panel of stocks using OLS with all variables (OLS), OLS using

only size, book-to-market, and momentum (OLS-3), PLS, PCR, elastic net (ENet), generalize linear model (GLM),
random forest (RF), gradient boosted regression trees (GBRT), and neural networks with one to five layers (NN1–NN5).
“+H” indicates the use of Huber loss instead of the l2 loss. We also report these R2

oos within subsamples that include
only the top 1,000 stocks or bottom 1,000 stocks by market value. The lower panel provides a visual comparison of the
R2

oos statistics in the table (omitting OLS due to its large negative values).

the specification with the elastic net—generates a substantial improvement over the full OLS model

(R2
oos of 0.16% and 0.09% respectively). Figure 3 summarizes the complexity of each model at each

re-estimation date. The upper left panel shows the number of features to which elastic net assigns

a non-zero loading. In the first ten years of the test sample, the model typically chooses fewer than

five features. After 2000, the number of selected features rises and hovers between 20 and 40 (we

discuss the identities of leading predictors in the next subsection).

Regularizing the linear model via dimension reduction improves predictions even further. By

forming a few linear combinations of predictors, PLS and especially PCR, raise the out-of-sample

R2 to 0.18% and 0.28%, respectively. Figure 3 shows that PCR typically uses 20 to 40 components

in its forecasts. PLS, on the other hand, fails to find a single reliable component for much of the

early sample, but eventually settles on three to six components. The improvement of dimension

reduction over variable selection via elastic net suggests that characteristics partially redundant and

fundamentally noisy signals. Combining them into low-dimension components averages out noise to

better reveal their correlated signals.

25

59

Results
Figure 3: Time-varying Model Complexity

1985 1990 1995 2000 2005 2010 2015

#
 o

f
C

h
ar

.

0

20

40

60
Enet+H

1985 1990 1995 2000 2005 2010 2015

#
 o

f
C

o
m

p
.

0

20

40

60
PCR

1985 1990 1995 2000 2005 2010 2015

#
 o

f
C

o
m

p
.

0

2

4

6
PLS

1985 1990 1995 2000 2005 2010 2015

#
 o

f
C

h
ar

.

0

20

40

60

80
GLM+H

1985 1990 1995 2000 2005 2010 2015

T
re

e
D

ep
th

0

2

4

6
RF

1985 1990 1995 2000 2005 2010 2015

#
 o

f
C

h
ar

.

20

25

30

35
GBRT+H

Note: This figure demonstrates the model complexity for elastic net (ENet), PCR, PLS, generalized linear model with
group lasso (GLM), random forest (RF) and gradient boosted regression trees (GBRT) in each training sample of
our 30-year recursive out-of-sample analysis. For ENet and GLM we report the number of features selected to have
non-zero coefficients; for PCR and PLS we report the number of selected components; for RF we report the average
tree depth; and for GBRT we report the number of distinct characteristics entering into the trees.

The generalized linear model with group lasso penalty fails to improve on the performance of

purely linear methods (R2
oos of 0.19%). The fact that this method uses spline functions of individual

features, but includes no interaction among features, suggest that univariate expansions provide

little incremental information beyond the linear model. Though it tends to select more features than

elastic net, those additional features do not translate into incremental performance.

Boosted trees and random forests are competitive with PCR, producing fits of 0.27% and 0.30%,

respectively. Random forests generally estimates shallow trees, with one to five layers on average.

To quantify the complexity of GBRT, we report the number of features used in the boosted tree

ensemble at each re-estimation point. In the beginning of the sample GBRT uses around 20 features

to partition outcomes, with this number increasing to 30 later in the sample. In terms of complexity,

all methods exhibit the same pattern that the number of reliable features increases over time. This is

likely due to increasing trends in cross section size and improvements in characteristic data coverage

and quality.

Neural networks are the best performing nonlinear method, and the best predictor overall. The

R2
oos is 0.35% for NN1 and peaks at 0.39% for NN3. These results point to the value of incorporating

complex predictor interactions, which are embedded in tree and neural network models but that are

26

60

Results
Table 2: Annual Out-of-sample Stock-level Prediction Performance (Percentage R2

oos)

OLS OLS-3 PLS PCR ENet GLM RF GBRT NN1 NN2 NN3 NN4 NN5

+H +H +H +H +H

All -34.86 2.87 2.93 3.08 1.78 2.60 3.28 3.09 2.64 2.70 3.40 3.60 2.79

Top -54.86 2.77 1.84 1.64 1.90 1.82 4.80 4.07 2.77 4.24 4.73 4.91 4.86

Bottom -19.22 5.30 5.36 5.44 3.94 5.00 5.08 4.61 4.37 3.72 5.17 5.01 3.58

O
LS-3+H

PLS
PC
R

EN
et+H

G
LM

+H

R
F

G
B
R
T+H

N
N
1

N
N
2

N
N
3

N
N
4

N
N
5

R
2 o
o
s

0

1

2

3

4

5

6
All

Top

Bottom

Note: Annual return forecasting R2
oos (see Table 1 notes).

missed by other techniques. The results also show that in the monthly return setting, the benefits

of “deep” learning are limiting, as four and five layer models fail to improve over NN3.27

The second and third rows of Table 1 break out predictability for large stocks (the top 1,000 stocks

by market equity each month) and small stocks (the bottom 1,000 each month). These are based

on the full estimated model (using all stocks), but focuses on fits among the two subsamples. The

baseline patterns that OLS fares poorly, regularized linear models are an improvement, and nonlinear

models dominate carries over into subsamples. Tree methods and neural nets are especially successful

among large stocks, with R2
oos’s ranging from 0.53% to 0.72%. This dichotomy provides reassurance

that machine learning is not merely picking up small scale inefficiencies driven by illiquidity.28

Table 2 conducts our analysis at the annual horizon. The comparative performance across dif-

ferent methods is similar to the monthly results shown in Table 1, but the annual R2
oos is nearly

an order of magnitude larger. Their success in forecasting annual returns likewise illustrates that

27Because we hold the five neural nets architectures fixed and simply compare across them, we do not describe their
estimated complexity in Figure 3.

28As an aside, it is useful to know that there is a roughly 3% inflation in out-of-sample R2s if performance is
benchmarked against historical averages. For OLS-3, the R2 relative to the historical mean forecast is 3.74% per
month! Evidently, the historical mean is such a noisy forecaster that it is easily beaten by a fixed excess return
forecasts of zero.

27

61

Results
Figure 4: Variable Importance By Model

PLS PCR

lev
operprof

retvol
chcsho

nincr
cashpr

agr
rd_mve

dolvol
ep

mvel1
mom6m

sp
turn

maxret
std_turn

mom12m
indmom
chmom

mom1m

0.0 0.1 0.2 0.3
mom36m

bm_ia
chinv

lgr
bm

depr
cashpr

mom6m
ep

invest
agr

rd_mve
chcsho
mvel1

sp
maxret

indmom
mom12m

chmom
mom1m

0.0 0.1 0.2 0.3

ENet+H GLM+H

mom36m
mom6m

retvol
mvel1

ep
turn

chinv
chmom

nincr
ps

std_turn
sp

chcsho
invest

rd_mve
dolvol

agr
indmom

mom12m
mom1m

0.0 0.2 0.4 0.6
mom36m

securedind
sic2

chinv
lgr
ep

turn
chmom

dolvol
cashpr
chcsho

ill
invest

agr
rd_mve
maxret
mvel1

indmom
mom12m

mom1m

0.0 0.1 0.2 0.3 0.4 0.5

RF GBRT+H

mom36m
dolvol

ill
betasq

beta
sp

idiovol
convind
mom6m

baspread
mom12m

chmom
retvol
nincr

securedind
indmom
maxret
mvel1

dy
mom1m

0.00 0.05 0.10
rd_mve

turn
mom36m

age
beta

mom6m
baspread

idiovol
sp

convind
chmom

mvel1
indmom

retvol
nincr

maxret
mom12m

securedind
mom1m

dy

0.00 0.05 0.10 0.15 0.20

NN2 NN3

betasq
sp

mom36m
securedind

zerotrade
nincr

indmom
std_turn

idiovol
ill

baspread
mom6m

mom12m
turn

dolvol
maxret
chmom

retvol
mvel1

mom1m

0.00 0.05 0.10 0.15 0.20
beta

sp
securedind

mom36m
zerotrade

nincr
indmom
std_turn

ill
mom12m
baspread

mom6m
idiovol

turn
dolvol

chmom
maxret

retvol
mvel1

mom1m

0.00 0.05 0.10 0.15 0.20

Note: Variable importance for the top 20 most influential variables in each model. Variable importance is an average
over all training samples. Variable importances within each model are normalized to sum to one.

29

62

