Machine Learning Methods
in Empirical Finance

Marcelo C. Medeiros

Departamento de Economia
Pontificia Universidade Catélica do Rio de Janeiro

Lecture 2
XVIIT Encontro Brasileiro de Financas

Regression Trees

Regression Trees

Introduction

» Flexible non-parametric predictive model.

Regression Trees

Introduction

» Flexible non-parametric predictive model.

» Recursive partition of the input space X (set of explanatory
variables).

Regression Trees

Introduction

» Flexible non-parametric predictive model.

» Recursive partition of the input space X (set of explanatory
variables).

» Hierarchical nature

Regression Trees

Introduction

» Flexible non-parametric predictive model.

» Recursive partition of the input space X (set of explanatory
variables).

» Hierarchical nature

P Interpretability

Regression Trees

Introduction

» Flexible non-parametric predictive model.

» Recursive partition of the input space X (set of explanatory
variables).

» Hierarchical nature
P Interpretability

» Categorical variables and missing data (treated as a
category) easily handled.

Regression Trees

Introduction

» Flexible non-parametric predictive model.

» Recursive partition of the input space X (set of explanatory
variables).

» Hierarchical nature
P Interpretability

» Categorical variables and missing data (treated as a
category) easily handled.

» Main disadvantage: highly unstable.

— FEasy fixes: bagging and boosting
— Drawback: interpretability lost.

Regression Trees

Example

» Predict log wages of baseball players based on the length of
the career (years) and number of hits.

. 238
.
Years, < 4.5 olg o
t N .
.
H
. bo.. JRa.e .
cdfsg et T
R
Y N T PR
U tp tiity H
@ . . .
£ 2
2| Rttt
PCE PO RO « e o .
cge s o2 .
I I R
O A N
. .
) ‘“3.:--' R N
Hits <[117.5 s d L] *e 8
5.11 . . .
., 1
1 45 24
6.00 6.74

Years

Regression Trees

Mathematical Representation

Notation:
» number of (regions, leaves) K and N

)

Regression Trees

Mathematical Representation

Notation:
» number of (regions, leaves) K and N

» different regions denoted as Ri,...,Rx;

Regression Trees

Mathematical Representation

Notation:
» number of (regions, leaves) K and N
» different regions denoted as Ri,...,Rx;

» root node at position 0;

Regression Trees

Mathematical Representation

Notation:
» number of (regions, leaves) K and N
» different regions denoted as Ri,...,Rx;

» root node at position 0;

» parent node at position j has two split (child) nodes at
positions 25 + 1 and 25 + 2;

Regression Trees

Mathematical Representation

Notation:
» number of (regions, leaves) K and N
» different regions denoted as Ri,...,Rx;
» root node at position 0;

parent node at position j has two split (child) nodes at
positions 25 + 1 and 25 + 2;

each parent node has a threshold (split) variable
associated, x,;; € @y, where s; € S = {1,2,...,p}; and

Regression Trees

Mathematical Representation

Notation:
» number of (regions, leaves) K and N
» different regions denoted as Ri,...,Rx;
» root node at position 0;

parent node at position j has two split (child) nodes at
positions 25 + 1 and 25 + 2;

each parent node has a threshold (split) variable
associated, x,;; € @y, where s; € S = {1,2,...,p}; and
J and T are the sets of parent and terminal nodes,
respectively.

Regression Trees

Mathematical Representation

= Hyr(ze;) + ue = Zﬁl (x: € Ri) +ur = Z&Bm x5 0;) + ue

=1 1€T

ni,5 (A4ng 5) (1—mn; j)(14n;)

J J K2V}]

B.U’L ZBt, | | I xS]7t7C] 2 |:1 -](xsjyt;cj)])
Jjel

I y o1 s
Ts. 45C) =
A 0 otherwise,

—1 if the path to leaf i does not include parent node j;

ni; =40 if the path to leaf ¢ include the right-hand child of parent node j;
1 if the path to leaf i include the left-hand child of parent node j.

» J;: set of indexes of parent nodes included in the path to leaf i.

> 0;={ck}suchthat k € J;,i € Te),y By (x;0;) = 1.

Regression Trees

Recursive Partitioning

Idea:

» Choose the split variable z; and the threshold ¢ in order to
reduce the squared errors.

Regression Trees

Recursive Partitioning

Idea:

» Choose the split variable z; and the threshold ¢ in order to
reduce the squared errors.

» For each split, two new regions:

Ri={z|z; <z} and R ={z|zr; >z}

Regression Trees

Recursive Partitioning

Idea:

» Choose the split variable z; and the threshold ¢ in order to
reduce the squared errors.

» For each split, two new regions:
Ri={z|z; <z} and R ={z|zr; >z}

» Recursive partitions are created until the total sum of
squares is bellow a certain pre-specified value or the
number of observations in each region reached a minimum
value.

Regression Trees

Recursive Partitioning: Example

Regression Trees

Pruning

Idea:

» Grow a large tree 7y and prune the leaves in order to
reduce complexity.

Regression Trees

Pruning

Idea:
» Grow a large tree 7y and prune the leaves in order to
reduce complexity.
» The degree of pruning is controlled by an user-defined
parameter o.

Regression Trees

Pruning

Idea:

» Grow a large tree 7y and prune the leaves in order to
reduce complexity.

» The degree of pruning is controlled by an user-defined
parameter o.

» For each tree 7 C 7, define the loss function
Co(T) = sum of squared errors + a K,

where K is the number of leaves (regions) of 7.

Regression Trees

Pruning

Idea:

» Grow a large tree 7y and prune the leaves in order to
reduce complexity.

» The degree of pruning is controlled by an user-defined
parameter o.

» For each tree 7 C 7, define the loss function
Co(T) = sum of squared errors + a K,

where K is the number of leaves (regions) of 7.

» « is selected by cross-validation.

Regression Trees

Pruning: Example

Years < 4.5
T
RBI 460.5 Hits <|117.5
Putouts < 82 Years|< 35
I Years|< 3.5 |
5.487 5394 6189
4622 5183
Walks|< 43.5 Walks|< 52.5
Runs £ 47.5 ‘ RBI 4 80.5
6407 gsa9 Years[<65
6015 5571 7280
6459 7.007

10

Regression Trees

Pruning: Example

S T = Training
= Cross-Validation
= Test

©

S}

g
m @
- o
o
S _— T ——
o
L § _ 1
g ©] \ e— 2 Tt ——
= —
e

84

o

=

T T T T T
2 4 6 8 10

Tree Size

Boosting Regression Trees

12

Introduction to Boosting

> Boosting is a greedy algorithm for additive models.

13

Introduction to Boosting

> is a greedy algorithm for

— A greedy algorithm is an algorithmic paradigm that follows the
problem solving heuristic of making the locally optimal choice at
each stage with the hope of finding a global optimum.

13

Introduction to Boosting

> is a greedy algorithm for
— A greedy algorithm is an algorithmic paradigm that follows the
problem solving heuristic of making the locally optimal choice at
each stage with the hope of finding a global optimum.
— In many problems, a greedy strategy does not produce an
optimal solution, but may yield locally optimal solutions that
approximate a global optimal solution in a reasonable time.

13

Introduction to Boosting

> is a greedy algorithm for

— A greedy algorithm is an algorithmic paradigm that follows the
problem solving heuristic of making the locally optimal choice at
each stage with the hope of finding a global optimum.

— In many problems, a greedy strategy does not produce an
optimal solution, but may yield locally optimal solutions that
approximate a global optimal solution in a reasonable time.

— Additive models:

M

Yt = f(wt) + us = Z ,Bmf'm(wt) + Ut,

m=1

where:
» ;. dependent variable;
> x; € RP: vector of explanatory variables;
» wu:: random error;
» fm(x:): basis function or weak learner.

13

Introduction to Boosting

> is a greedy algorithm for

— A greedy algorithm is an algorithmic paradigm that follows the
problem solving heuristic of making the locally optimal choice at
each stage with the hope of finding a global optimum.

— In many problems, a greedy strategy does not produce an
optimal solution, but may yield locally optimal solutions that
approximate a global optimal solution in a reasonable time.

— Additive models:

yt:f(-‘rUt: Z,Bmf'm wt)+ut7

m=1

where:
» ;. dependent variable;
> x; € RP: vector of explanatory variables;
» wu:: random error;
» fm(x:): basis function or weak learner.

» Origin of the method: classification problems.

13

Introduction to Boosting

» The goal is to estimate the optimal function f*, defined as

ff= argmfinE [L(Y, f(X))],

where
- Y=, - u)
- X =(x1,...,xp) and ©; = (zi1,...,2:7) and

— L(-,-) is a loss function.

14

Introduction to Boosting

» The goal is to estimate the optimal function f*, defined as

fri=arg InfinE [L(Y, f(X))],

where
- Y=, - u)
- X =(x1,...,xp) and ©; = (zi1,...,2:7) and

— L(-,-) is a loss function.

» We consider just the quadratic loss: Ly-Boosting.

14

Introduction to Boosting

» The goal is to estimate the optimal function f*, defined as

fri=arg InfinE [L(Y, f(X))],

where
- Y=, - u)
- X =(x1,...,xp) and ©; = (zi1,...,2:7) and

— L(-,-) is a loss function.
» We consider just the quadratic loss: Ly-Boosting.
» Therefore, the goal is to estimate E(Y|X).

14

Introduction to Boosting

» In practice, the optimization problem has the following
form:

T
f=arg mfln;, tz_; Ly, f (),

~~

=R

Introduction to Boosting

» In practice, the optimization problem has the following
form:

T
f=arg mfln;, tz_; Ly, f (),

» For quadratic loss:

15

Properties

» Easy to adjust for different choices of loss functions.

16

Properties

» Easy to adjust for different choices of loss functions.

» Variable selection.

16

Properties

» Easy to adjust for different choices of loss functions.

» Variable selection.

» Useful when p >> T'. In this case,

p
E xzt

16

Properties

» Easy to adjust for different choices of loss functions.
» Variable selection.

» Useful when p >> T'. In this case,

p
E xzt

» Robust to multi-collinearity.

16

Properties

vy

Variable selection.

v

Useful when p >> T. In this case,

p
E xzt

Robust to multi-collinearity.

v

» Optimizes the predictive power.

Easy to adjust for different choices of loss functions.

16

Gradient Boosting
Algorithm:

~[0
1. Initialize a T-dimensional vector f o with some value. Set
j = 0 and choose the weak learners. Set the number of
learners to p.

2. Set j = j + 1 and compute

9 Sli-1] _
—ﬂL(Y,f) and f7 (xy),t=1,...,T.
Write
-1 _ |77l
u [Ut L:l,...,T
0
= |——L(Y
SV

Y=y f=fU" () | 4oy 1

17

Gradient Boosting

Algorithm (continuation):
3. Compute UV~ and choose the learner that best fits

UU-1 Set ﬁ[j_1] as the fitted values of the best model.
4. Update
?[j] _ }.[j—ll —l—ylA][j_H, 0<v<l

5. Repeat steps 2-4 until the maximum number of iterations
is reached.

18

Componentwise Algorithm

» One learner for each covariate.
Ui~ g,
vl < x,

Ul < g4

Ul ~ x;, — Best Model —

Ub-1 o x,

ﬁ[j—ll

19

Example

Residuals

y=(05-0.96%)x+0.02¢

0 o
@ e %
wmbu °
° 00 @°
o o ® 00 5o °
" o °
£ ° o o
T T T T T
) 0 o w0)
= S S S =
5 =] = =) <
srenpisay
o 5e’e o
° « °
96 O
o0& <
° N °
° ° // 00 ©°
° o o'
©° ° ol® oo e
° r N
s | e
o
oo [HE e
°8s
° o/
o fo
o ° ®
w0 TR0 00
° ke uow
o
e o
o ° Ly o«o/&u °
" Pt
£ ° T
T T T T
) 0 o 0 o
= =] S S =
5 =] S =) <
A

0.2

0.1

0.0

-0.1

-0.2

0.2

0.1

0.0

-0.1

-0.2

20

Example

Residuals

0.10 4

0.05 o

0.00 +

sfenpisay

y=(05-09e"¥)x+0.02¢

0.10 4

0.05 4

-0.05 1

02

0.1

0.0

-0.1

-0.2

0.2

0.1

0.0

-0.1

-0.2

21

Example

y=(05-09e™) x+002¢

0.10

0.05

>0.00

-0.05

Residuals

0.05

Residuals
o
1=
3

-0.05

-0.10 -

-02 -0.1 0.0 0.1 0.2

22

Example

Residuals

y=(05-0.9e %) x+0.02¢

0.10 4

0.05 o

-0.10

0.10 4

02

0.1

0.0

-0.1

-0.2

0.0

-0.1

-0.2

23

Example

-~ % .
y=(05-09e"*)x+0.02¢ Residuals
0.10 4 0.10 4
.
m=10 % m=10 o
0.05 + 0.05 +
©
]
E]
> 0.00 £ 0.00
O
[14
-0.05 4 -0.05 -
o o
010 4 o -0.10 4
T T T T T T T T T T
-0.2 -0.1 0.0 0.1 0.2 -0.2 -0.1 0.0 0.1 0.2

Example

0.10

0.05

>0.00

-0.05

-0.10

y=(05-0.9e"%) x+002¢ Residuals

0.05 4 °

Residuals
o
=]
3
1

-0.05 - °° o

-0.10 +

-0.1 0.0 0.1 0.2 -0.2 -0.1 0.0 0.1 0.2

25

Example

Residuals

0.10 4

0.05 4

T
=3
=3
S
sfenpisay

-0.05 4

-0.10 +

y=(05-09¢)x+0.02¢

0.10 4

0.05 4

02

01

0.0

-0.1

-0.2

0.2

0.1

0.0

-0.1

-0.2

26

Example

y=(05-09e ") x+002¢

0.10 4

0.05 o

>0.00

-0.05

Residuals

Residuals
0.10 4
m=150
0.05 4 °
o ° o
o o %o oo ° % o
s °3
% ° .
DQUVH B ®,00 o 0,0 o og o °
000 RESIER; o
3 8% o g © u§° ®
o T ™ T e .
o o0 "% ° 3 e o .
5 :
.
-0.05 -| °
o e
-0.10 4
T T T T T
-02 -01 0.0 0.1 02
X

Gradient Boosting Properties

» It is clear from step 4 that

U

=7

» The structure of the prediction function will depend on the
choice of the weak learners.

oL pvY

—|—I/ﬁ

— Linear learners — linear function
— Smooth learners — smooth function

» Variable selection

» Useful when p >> T.
> If J — oo, the algorithm will select irrelevant regressors.

— Solution: early stopping with cross-validation or information
criteria.

28

Example: Linear Learners

Set-up:
» Three regressors: xi, T2, T3.
» Three linear learners.
» J=5
» Hypothetical solution: x; selected at iterations 1, 2 and 5
and x5 selected at iterations 3 and 4.

Sl 0 | =[]
r 0]

+vU 2

3] (4]

]:?[0]+Vﬁ + U7 + U +0U

~[0 ~J0 ~M ~[2 ~[3 ~[4

=B Bl s + By + B s+ vB s + 0B
~[0 ~[0 ~[1 ~[4 ~[2 ~[3

B4 (BB B) rt (B4 B)

~[0 ~ ~
= ,3[} + Bz + Byzs.

29

Boosting Regression Trees

Algorithm:

1. Initialize fo(x) = argmin 23;1 Ly,).
C
2. Form=1,...,M:
2.1 Fort=1,...,T, compute:

2.2 Fit a regression tree for r¢,, giving terminal regions (leaves)

Rim,3=1,...,Kn.
2.3 For j=1,2,..., K,,, compute

Cim = argmcin Z L(ye, fm—1(xt) +¢)

Tt ERjm

2.4 Update fm(x) = frn—1(x) + 1/25(:"{ cimI(x € Rjm)

~

3. Output: f(x) = fu(x)

30

Boosting Regression Trees

» Note that for square loss:

OL(yt, f (1))
Of (x)

» What is the right size of the trees (K,,)?
— Simple strategy: K,, = K, Vm, K small.
— The larger is K, the larger is the interaction among different
variables. For example, if K = 2 there is no interaction.
— Typically, in empirical works 4 > K < 8.

» What are the values of M and v?

- v (0 < v < 1) is the learning rate.

— Smaller values of v (more shrinkage) result in larger training risk
for the same number of iterations M.

Both v and M control the prediction risk in the training data
and do not operate independently.

— Typically, v is small (v < 0.1) and M is chosen by early stopping.

=y — f(x¢)

31

Regression Trees

Boosting and Relative Importance of Predictor Variables

» Measure of relative importance of the ith covariate for a
single tree T:
N
) .
T(T) =) i(s; =),

J=

—_

where N = K — 1 is the number of internal nodes and i2(-)
is the estimated improvement in squared error risk over
that for a constant fit over the entire region.

» For boosted trees:

M
L= Ti(Tm)-

m=1

32

Boosting Regression Trees

Example: California Housing

» Reference: Hastie, Tibshirani and Friedman (2009), Section
10.14.1 and Pace and Barry (1997,Stat&Prob Letters)

» Data is available form Carnegie-Mellon Statlib repository.

» The dataset consists of aggregated data from 20, 460
neighborhood (1990 census block groups) in California.

» The dependent variable y is the median house value in each
neighborhood measures in units of $100, 000.

» Predictors are demographic variables such as median income
(MedInc), housing density as reflected by the number of houses
(House), and average occupancy in each house (AveOccup);
location of each neighborhood (longitude and latitute); and
several quantities reflecting the properties of the houses in the
neighborhood such as average number of room AveRooms and
bedrooms (AvgBedrms). Total of eight predictors, all numeric.

Boosting Regression Trees

Example: California Housing

» K =6and v =0.1.
» Huber loss to control for outliers:

blye— fl@)]” ity — fl@o)] <
Slye — f(z)| — 56% otherwise.

L(ys, f(2)) = {

34

Boosting Regression Trees

Example: California Housing

» For the Huber loss:

OL(ye, f(x1)) _ Jye — flae) for |yi — f(2:)| <6
Of (x) osignly; — f(x)] otherwise,

where § = a — quantile[|y; — f(x)]].

35

Boosting Regression Trees

Example: California Housing

Average-absolute error as a function of iterations
Training and Test Absolute Error

—— Train Error
— ~—— Test Error

0.8

0.6

Absolute Error
0.4

0.2

0.0
|

36

Boosting Regression Trees

Example: California Housing

Relative variable importance

Population

AveBedrms

AveRooms

HouseAge

Latitude

AveOccup

Longitude

Medinc

Relative importance

37

Boosting Regression Trees
Example: California Housing

Partial dependence of housing value on nonlocation variables

o [t}
o - 7
w0 | o
O @ 7
<3 3
5 5
- < | ° v |
g - s o
g &
a g, o o |
s s °
8 o 3 1
[e 24
) o
< <
I | L ! I B 1
2 4 6 8 10 2 3 4 5
Medinc AveOccup
|
i e 4
P

0.5

Partial Dependence
0.5 0.0
|
Partial Dependence
05 00 05
I

\f/fr,f—

-1.0
L
-1.0

10 20 30 40 50 4 6 8 10
HouseAge AveRooms

Boosting Regression Trees

Example: California Housing

Partial dependence of house value on median age and average occupancy

30

20

HouseAge

5 AveOccup

39

Boosting Regression Trees

Example: California Housing

Partial dependence of house value on location

1.0

05

0.0

Latitude

- -0.5

F-10

-124 -122 -120 -118 -116 -114

Longitude

Bagging Regression Trees: Random Forests

41

What is Bagging?

» Bagging = Bootstrap Aggregating

42

What is Bagging?

» Bagging = Bootstrap Aggregating

» Introduced by Breiman(1996, ML) to reduce the variance
of a predictor.

42

What is Bagging?

» Bagging = Bootstrap Aggregating

» Introduced by Breiman(1996, ML) to reduce the variance
of a predictor.

P> Let’s consider a regression setup where data is collected as

Z, = (y,zy), t=1,....T.

42

What is Bagging?

» Bagging = Bootstrap Aggregating

» Introduced by Breiman(1996, ML) to reduce the variance
of a predictor.

P> Let’s consider a regression setup where data is collected as
Z, = (y,zy), t=1,....T.

> Let R
GT(m) = hT(Zl, ceey ZT)(QZ)

be an estimator of E(y|x).

42

What is Bagging?

The Bagging Algorithm
1. Construct a bootstrap sample
Zy=(y;, %)), t=1,...,T.

according to the empirical distribution of the pairs (y¢,),
t=1,...,T.

43

What is Bagging?

The Bagging Algorithm

1. Construct a bootstrap sample
Zy=(y;, %)), t=1,...,T.

according to the empirical distribution of the pairs (y¢,),
t=1,...,T.

2. Compute the bootstrapped predictor é\}(m) by the plug-in
principle; that is,

O (x) = hr(Z3, ..., Z5) ().

43

What is Bagging?

The Bagging Algorithm
1. Construct a bootstrap sample
Z; = (yhxp), t=1,...,T.

according to the empirical distribution of the pairs (y¢,),
t=1,...,T.

2. Compute the bootstrapped predictor é\}(m) by the plug-in
principle; that is,

O (x) = hr(Z3, ..., Z5) ().

3. The bagged predictor is

O (@) = E* |07 ()]

43

What is Bagging?

» In practice the expectation E* [5}(:1:)} is computed by
Monte Carlo:

44

What is Bagging?

» In practice the expectation E* [5}(:1:)} is computed by
Monte Carlo:

— For each bootstrap simulation j, j =1,...,B

5},(3')(1”) =ha(Z1 Gy, Z7 () ().

44

What is Bagging?

» In practice the expectation E* [5}(:1:)} is computed by
Monte Carlo:
— For each bootstrap simulation j, j =1,...,B
07,5 () = hn(Z3 (), - - Z7,) ().

— Therefore,

B
Z O7,j) (=

44

What is Bagging?

» In practice the expectation E* [5}(:1:)} is computed by
Monte Carlo:
— For each bootstrap simulation j, j =1,...,B
07,5 () = hn(Z3 (), - - Z7,) ().

— Therefore,

B
Z O7,j) (=

» There can be a drastic variance reduction if the predictor is
unstable.

44

What is Bagging?

Stability of a predictor

A statistic R
Or(x) = hr(Z1,...,Zr)(z)

is called stable at x if

~

On(x) = 0(z) + 0p(1)
as n — oo for some fixed value 6(x).

» Different from consistency.

45

What is Bagging?

Stability of a predictor
A statistic R
HT(m) = hT(Zl, ey ZT)(w)

is called stable at x if

~

On(x) = 0(z) + 0p(1)
as n — oo for some fixed value 6(x).

» Different from consistency.

» O(x) is just a stable limit and not necessarily the parameter
of interest.

45

What is Bagging?

Stability of a predictor
A statistic R
HT(m) = hT(Zl, ey ZT)(w)
is called stable at x if
O () = O(z) + 0,(1)

as n — oo for some fixed value 6(x).

» Different from consistency.

» O(x) is just a stable limit and not necessarily the parameter
of interest.

» Subset model selection via testing creates unstable
predictors.

45

What is Bagging?

Stability of a predictor
A statistic R
HT(m) = hT(Zl, ey ZT)(w)
is called stable at x if
O () = O(z) + 0,(1)

as n — oo for some fixed value 6(x).

» Different from consistency.

» O(x) is just a stable limit and not necessarily the parameter
of interest.

» Subset model selection via testing creates unstable
predictors.

>

45

Random Forests
Bagging and Random Forests
Algorithm:
1. Forb=1,...,B:

1.1 Draw a bootstrap sample of size 1" from the original data
(sampling with replacement).

1.2 For each sample, estimate a tree Ty, using as potential split
variables a subset of ¢ out of the p original variables randomly
chosen. The tree should grow until the minimum number of
observations in each leaf is reached. No pruning.

2. The final prediction is given as:

1 B
b=1

3. B can be monitored by the Out-of-the-Bag error: for each
observation z; = (y, x})’, construct its random forest
predictor by averaging only those trees corresponding to
bootstrap samples in which z; did not appear.

46

Random Forests

Example: California Housing

Test average absolute error as a function of the number of trees

California Housing Data

(\) RF m=2
3 | RF m=6
S N GBM depth=4
o ® GBM depth=6
5 S o
IS o
w o
2L o o
> ¥ Q
2 °
2 2
< %
[0} ™ %
g o
g
<08
s o
°
<
]
o
N
]
S T T T

0 200 400 600 800 1000

Number of Trees

Sieves and Neural Networks

48

Sieve Spaces

Motivation

» Approximation of nonlinear unknown functions by the
method of sieves of Grenander (1981).

49

Sieve Spaces

Motivation

» Approximation of nonlinear unknown functions by the
method of sieves of Grenander (1981).

» Unlike the kernel estimator which is a local estimator, the
sieve is a global estimator in the sense that it estimates the
function of interest over its entire domain in a single step.

49

Sieve Spaces

Motivation

» Approximation of nonlinear unknown functions by the
method of sieves of Grenander (1981).

» Unlike the kernel estimator which is a local estimator, the
sieve is a global estimator in the sense that it estimates the
function of interest over its entire domain in a single step.

» Sieve estimators have several advantages:

49

Sieve Spaces

Motivation

» Approximation of nonlinear unknown functions by the
method of sieves of Grenander (1981).

» Unlike the kernel estimator which is a local estimator, the
sieve is a global estimator in the sense that it estimates the
function of interest over its entire domain in a single step.

» Sieve estimators have several advantages:

1. Computational easiness

49

Sieve Spaces

Motivation

» Approximation of nonlinear unknown functions by the
method of sieves of Grenander (1981).

» Unlike the kernel estimator which is a local estimator, the
sieve is a global estimator in the sense that it estimates the
function of interest over its entire domain in a single step.

» Sieve estimators have several advantages:

1. Computational easiness
2. Easy to impose restrictions

49

Sieve Spaces

Motivation

» Approximation of nonlinear unknown functions by the
method of sieves of Grenander (1981).

» Unlike the kernel estimator which is a local estimator, the
sieve is a global estimator in the sense that it estimates the
function of interest over its entire domain in a single step.

» Sieve estimators have several advantages:

1. Computational easiness
2. Easy to impose restrictions
3. Much easier solution under endogeneity

49

Sieve Spaces

Definition

» Consider the general nonlinear, semi-parametric model:

Yyi = mo(®i) + u;
/
Box; + ho(x;) + u;,
N~~~ SN——
parametric component nonparametric component
where {u;}, i =1,...,n is a sequence of random
disturbances and x; € RP is a vector of covariates.

50

Sieve Spaces

Definition

» Consider the general nonlinear, semi-parametric model:

Yyi = mo(®i) + u;
/
Boxi + ho(x;) + ug,
—— N——
parametric component nonparametric component
where {u;}, i =1,...,n is a sequence of random
disturbances and x; € RP is a vector of covariates.
» Let’s assume for now that E(u;|x;) = 0 and
E(u?|x;) = 0%(x;) < oo, for all i = 1,...n.

50

Sieve Spaces

Definition
» Consider the general nonlinear, semi-parametric model:

Yyi = mo(®i) + u;
= Boxi + ho(z;) + u,
—— ——

parametric component nonparametric component

where {u;}, i =1,...,n is a sequence of random
disturbances and x; € RP is a vector of covariates.

» Let’s assume for now that E(u;|x;) = 0 and
E(u?|x;) = 0%(x;) < oo, for all i = 1,...n.

» The goal is to estimate the vector of parameters
0o = (B}, ho)’ € B x H = 0O, where B denotes a
finite-dimensional compact parameter space and H is an
infinite-dimensional parameter space.

50

Sieve Spaces

Definition

» Suppose that the infinite-dimensional space © is endowed
with a (pseudo-)metric d.

51

Sieve Spaces
Definition

» Suppose that the infinite-dimensional space © is endowed
with a (pseudo-)metric d.

» A typical semi-nonparametric econometric model specifies
that there is a population criterion function @) : ©® — R
which is uniquely maximized (or minimized) at a
(pseudo-)true parameter 6.

51

Sieve Spaces

Definition

| 2

| 4

Suppose that the infinite-dimensional space © is endowed
with a (pseudo-)metric d.

A typical semi-nonparametric econometric model specifies
that there is a population criterion function @) : ©® — R
which is uniquely maximized (or minimized) at a
(pseudo-)true parameter 6.

When O is infinite-dimensional and possibly not compact
with respect to the (pseudo-)metric d, maximizing and

empirical criterion function (),, over © may not be
well-defined.

51

Sieve Spaces

Definition

» We say that the optimization problem is well-posed if for
sequences {0} € O such that Q(6y) — Q(0x) — 0, then
d(60y,0y) — 0.

52

Sieve Spaces
Definition

» We say that the optimization problem is well-posed if for
sequences {0} € O such that Q(6y) — Q(0x) — 0, then
d(8o,0%) — 0.

» The problem is ill-posed if for sequences {0x} € © such
that Q(OO) — Q(Qk) — 0, but d(@o, Hk) - 0.

52

Sieve Spaces

Definition

Key Idea

» The method of sieves provides a general approach to
resolve difficulties associated with maximizing @), over ©
by maximizing @n over a sequence of approximating spaces
O, called Sieves.

53

Sieve Spaces

Definition

Key Idea

» The method of sieves provides a general approach to
resolve difficulties associated with maximizing @), over ©
by maximizing @n over a sequence of approximating spaces
O, called Sieves.

» These spaces are less complex than © but are in ©.

53

Sieve Spaces

Definition

Key Idea

» The method of sieves provides a general approach to
resolve difficulties associated with maximizing @), over ©
by maximizing @n over a sequence of approximating spaces
O, called Sieves.

» These spaces are less complex than © but are in ©.

» Popular sieves are typically compact, nondecreasing
(0, € Op41 C--- CO) and are such that for any element
0 € O there exists as element 7,0 € O, satisfying
d(@,m,0) — 0 as n — oo, where the notation 7, can be
regarded as a projection mapping from © to O,,.

53

Sieve Spaces

Definition

» The approximate sieve extremum estimate, denoted by én,
is defined as an approximate maximizer of @Q,,(0) over the
sieve space Op:

~

Qn(b\n) > sup @n(e) - Op(nn)a
0cO,

with n, — 0 as n — oo.

54

Sieve Spaces

Definition

» The approximate sieve extremum estimate, denoted by én,
is defined as an approximate maximizer of @Q,,(0) over the
sieve space Op:

~

Qn(b\n) > sup @n(e) - Op(nn)a
0cO,

with n, — 0 as n — oo.

» When 7, = 0 we call the estimator the ezact sieve
extremum estimate.

54

Nonlinear Sieve Spaces
Single Hidden Layer Neural Networks

Sigmoid Artificial Neural Network

The single hidden layer Sigmoid Artificial Neural Network
(sSANN) sieve is defined as

» S:R — Ris asigmoid “activation” function, i.e., a
bounded nondecreasing function such that Em S(u) =0
u —0o

and lim S(u) = 1.
U—r 00

55

Nonlinear Sieve Spaces
Single Hidden Layer Neural Networks

» Some popular sigmoid functions:

Heaviside: S(u) = 1(u > 0);

Logistic: S(u) = 1/[1 4 exp(—u)];

Hyperbolic tangent:

S(u) = [exp(u) — exp(—u)]/[exp(u) + exp(—u)];
Gaussian sigmoid: S(u) = (2r) /2 I exp(—y*/2)dy;
Cosine squasher:

S(u) = [1 4+ cos(u+ 37/2)]/21(Ju| < 7/2) + 1(u > 7/2).

ReLU: S(u) = ul(u > 0)

56

Empirical Example:
Equity Premium Forecasting with ML
Methods

Gu, Shihao, Bryan Kelly and Dacheng Xiu (2018). Empirical Asset Pricing via
Machine Learning. Working paper available at SSRN id 3159577.

57

Main Idea
» Model:

Teir1 = Ee(ri1) + €41
Ei(rii+1) = 9(ziyz)

where z;; is a large vector of predictors:
— 91 firm characteristics (61 of which are updated annually, 13
updated quarterly and 20 updated monthly);
— 74 industry dummies
— 8 macroeconomic predictors
— Interactions between macro factors and firm characteristics.

» 30,000 stocks over a sample starting in March 1957 and
ending in December 2016 (60 years).

» ML methods: linear regression, restricted linear regression
(FF factors), partial least squares (PLS), principal
component regression (PCR), generalized linear model
(GLM), random forest (RF), Boosted Trees (GBRT),
neural networks with 1 to 5 layers (NN1-NN5).

Results

OLS OLS-3 PLS PCR ENet GLM RF GBRT NN1I NN2 NN3 NN4 NN5

+H +H +H +H +H
All -4.60 0.16 0.18 0.28 0.09 0.19 0.27 0.30 0.35 038 039 037 0.35
Top 1000 -14.21 0.15 -0.10 -0.05 0.10 0.17 0.62 0.53 044 058 072 0.67 0.69
Bottom 1000 -2.13 0.37 029 036 0.18 0.28 0.29 0.27 0.41 045 046 042 0.40
08
WAl
0.7 -l Top

Bottom

0.6 -

0.5

0.4

2

0.3

0.2

Note: In this table, we report monthly R2,. for the entire panel of stocks using OLS with all variables (OLS), OLS using
only size, book-to-market, and momentum (OLS-3), PLS, PCR, elastic net (ENet), generalize linear model (GLM),
random forest (RF), gradient boosted regression trees (GBRT), and neural networks with one to five layers (NN1-NN5).
“+H” indicates the use of Huber loss instead of the I5 loss. We also report these R2,, within subsamples that include
only the top 1,000 stocks or bottom 1,000 stocks by market value. The lower panel provides a visual comparison of the
RZ,, statistics in the table (omitting OLS due to its large negative values).

59

Results

Enet+H PCR
60 60
540 £40
E £
20 220
° k]
* * 9
1985 1990 1995 2000 2005 2010 2015 1985 1990 1995 2000 2005 2010 2015
PLS GLM+H
6 30
g 5
3, g4
- °
3 32
0 0
1985 1990 1995 2000 2005 2010 2015 1985 1990 1995 2000 2005 2010 2015
RF GBRT+H
6 35
= 530
A S
52 %25
[t *

0 20
1985 1990 1995 2000 2005 2010 20 1985 1990 1995 2000 2005 2010 2015

o

Note: This figure demonstrates the model complexity for elastic net (ENet), PCR, PLS, generalized linear model with
group lasso (GLM), random forest (RF) and gradient boosted regression trees (GBRT) in each training sample of
our 30-year recursive out-of-sample analysis. For ENet and GLM we report the number of features selected to have
non-zero coefficients; for PCR and PLS we report the number of selected components; for RF we report the average
tree depth; and for GBRT we report the number of distinct characteristics entering into the trees.

60

Results

OLS OLS-3 PLS PCR ENet GLM RF GBRT NNI NN2 NN3 NN4 NN5
+H +H +H +H +H
All -34.86 2.87 293 3.08 1.78 2.60 3.28 3.09 264 270 340 3.60 279
Top -54.86 2.77 1.84 1.64 1.90 1.82 4.80 4.07 277 424 473 491 4.86
Bottom -19.22 5.30 536 5.44 3.94 5.00 5.08 4.61 437 372 517 5.01 3.58
6
WAl
W Top
51 Bottom

Note: Annual return forecasting R2,; (see Table 1 notes).

61

Results

PCR.
——
—

—
—
—
o1 02 ES
GLM-+H
—

0 02 0 0%

01 0z 03
GBRT+H

gas
358

rd_mvel

o 065 010 05 020
NN3
mom1m| momim | E—————
el v | —
etvol Tervol| E—
hmor mac:| E—
mastet chimo| —
ool Goivol| - —
i rn| - —
momiam| idioyol| - —
‘momsm| momen | m—
baspread| baspread| - —
il i | —
idiovol il —
std) std_twn|
inamom incmom
i nincr|
zerolfade| zerotratie|
secureging| fromsom

‘momsem| securedind)
|

betash|
0

beta|
o

62

