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Survey of four papers

1 Information Frontiers (generalizing the minimum variance
frontiers) and tests of dynamic asset pricing models
Almeida and Garcia (2017), Economic Implications of

Nonlinear Pricing Kernels, Management Science.

2 Measures of model misspeci�cation
Almeida and Garcia (2012), Assessing misspeci�ed asset

pricing models with empirical likelihood estimators, Journal of
Econometrics

3 Evaluation of managed funds performance
Almeida, Ardison and Garcia (2018), Nonparametric

Assessment of Hedge Fund Performance, Working Paper.

4 Estimating a tail risk measure
Almeida, Ardison, Garcia and Vicente (2017), Nonparametric

Tail Risk, Stock Returns, and the Macroeconomy, Journal of
Financial Econometrics
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Financial Theory and Stochastic Discount Factor

The central idea of modern �nance is that prices are generated by
expected discounted payo�s

pi
t = Et(mt+1x

i
t+1)

The discount factor mt+1 is equal to the growth in the marginal value of
wealth

mt+1 =
VW (t + 1)

VW (t)
.

The traditional theories of �nance, CAPM, ICAPM, and APT, measure

the marginal utility of wealth by the behavior of large portfolios of assets.

X CAPM: return on the market portfolio.
X Multifactor models: returns on multiple portfolios.

To make the link between the real economy and �nancial markets, we

measure the growth in marginal utility of wealth by the growth in

consumption (Consumption CAPM).

X Idea that consumption is the payo� on the market portfolio.
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Linear Factor Models

In a linear factor model, asset returns are described by the following
process:

Rit = ai + b′i ft + εit

E [εit | ft ] = 0

Rit return at time t for asset i

ai intercept of the factor model

bi (K × 1) vector of factor sensitivities for asset i

ft a (K × 1 ) vector of common factor realizations at time t

εit disturbance term.

The SDF is of the form:

mt+1 = α+ β′ft+1

Asset i can be an individual security, a portfolio or a managed fund.

Factors can be observed (returns on some portfolios or macroeconomic
variables) or latent (obtained by some statistical procedure).
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Consumption Capital Asset Pricing Model (CCAPM)

Max(Ct ,wi,t+1)Et

∞∑
i=0

βiU(Ct+i ), i = 1, ..., n

under the constraint:

Ct +
n∑

i=1

pitwi,t+1 ≤
n∑

i=1

(pit + Dit)wi,t + yt

One consumption good, in�nite horizon, additive and time separable utility

pit = price of asset i at time t; Dit = dividend paid on asset i at t, beginning of
period; wit = units of asset i held at beginning of period t; yt = labor income
exogenous at time t.

Fist-order condition:

U′(Ct) = βEt
[
Ri,t+1U

′(Ct+1)
]

Then: mt+1= β
U′(Ct+1)
U′(Ct )

. With isoelastic utility function: U(C) = C1−γ

1−γ

Et

[
Ri,t+1β

(
Ct+1

Ct

)−γ]
= 1 (1)
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Bringing the Models to the Data

The asset pricing model predicts:

E(pt) = E [m(datat+1, parameters)xt+1]

A natural way to check this prediction is to examine sample averages:

1

T

T∑
t=1

pt and
1

T

T∑
t=1

[m(datat+1, parameters)xt+1]

The Generalized Method of Moments (GMM) estimates the parameters
by making the sample averages as close to each other as possible.

GMM evaluates the model by looking at how close the sample averages of
price and discounted payo� are to each other (how small the pricing
errors are).

Other methods such as maximum likelihood impose stricter restrictions
on distributions.

For linear models, by far the most common in empirical asset pricing,
regression-based methods (cross-sectional and time-series) are the
standard.

One important remark: all models lead to pricing errors (another way of
saying all models are misspeci�ed).
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Existence of SDFs with weaker assumptions

From p = E(mx) can we always �nd a SDF without assuming all the
structure of investors, utility functions, complete markets, linear relations,
and so forth?

Two weaker restrictions: the law of one price and the absence of

arbitrage, help us in this direction.

Law of one price: If two portfolios have the same payo�s (in every state
of nature), then they must have the same price.

A �rst theorem states that there is a discount factor that prices all the
payo�s by p = E(mx) if and only if the law of price holds.

Absence of arbitrage: If payo� A is always at least as good as payo� B
and sometimes better then the price of A must be greater than the price
of B.

A second theorem states that there is a positive discount factor that
prices all the payo�s by p = E(mx) if and only if there are no arbitrage
opportunities and the law of one price holds.

All that is required from investors is that they do not leave law of one
price violations or arbitrage opportunities on the table.
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How to �nd empirically such SDFs

These theorems say that there exists a positive discount factor (m > 0)
but they do not say that it is unique.

These theorems say that there exists a positive discount factor (m > 0)
but they do not say that every discount factor must be positive (in every
state of nature).

Given a K-dimensional set of benchmark factors' excess returns (equity,

bonds, options, etc...) Re,f and a risk-free rate RF , any candidate SDF m

must correctly price:

The factors' excess returns: E [m.Re,f ] = 0K .

and the risk-free asset: E [m] = 1
RF

(here we assume RF = 1).

If markets are incomplete, and LOOP holds, an in�nity of possible
candidates for m exists.

If, in addition, there is no (in-sample) arbitrage, at least one strictly
positive m exists.

Fundamental Question: How to empirically identify strictly positive SDF

candidates m in a meaningful way?
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A �rst answer: Hansen and Jagannathan (1991)

HJ derive a SDF m that is a linear combination of a set of basis asset
returns R and that obeys: E [mR] = 1.

They look for a minimum-variance m since the mean-variance frontier of
all discount factors that price a given set of assets is related to the
mean-variance frontier of asset excess returns by:

σ(m)

E(m)
≥ |E(R

e)|
σ(Re)

which implies a nice duality:

min︸︷︷︸
all m that price the basis assets

σ(m)

E(m)
= max︸︷︷︸

all excess returns on basis assets

|E(Re)|
σ(Re)

They derive SDFs without positivity constraint (the SDF may be negative
in some states of nature) or with positivity constraint (the SDF is set to
zero in states of nature where it is negative).
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A More General Class of Admissible SDFs

Why not consider all strictly positive admissible SDFs?

X Set is too large. There is no empirical guideline on how to
identify all strictly positive SDFs.

However, a possible way to select speci�c strictly positive SDFs is
provided by Almeida and Garcia (Manag. Sci., 2017):

Given a convex discrepancy (penalty) function φ(m), we de�ne the
minimum discrepancy problem as:

mMD = arg min
m>0

E [φ(m)]

subject to E [m.Re,f ] = 0K

E [m] = 1

(1)

where m is the �best� available candidate in the discrepancy sense.
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Estimating SDFs: Sample Version

Assume that factors' returns have realizations Re,f
t .

Now, any SDF must correctly price factors' excess returns, in
sample:

1

T

T∑
t=1

mtR
e,f
t = 0K (2)

The sample version of the Minimum Discrepancy implied SDF
is obtained by:

m̂MD = arg min
{m1,...mT }

1
T

∑T
t=1 φ(mt),

s.t. 1
T

∑T
t=1mtR

e,f
t = 0K ,

1
T

∑T
t=1mt = 1,mt > 0∀t.
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Solving a MD Problem in the Dual Space

It is simpler to solve the original primal discrepancy problem in the
dual space (Borwein and Lewis, SICON, 1991):

λ̂ = arg sup
α∈<,λ∈Λ

α

Rf
−

T∑
t=1

1

T
φ∗,+

(
α + λ′Re,f

t

)
, (3)

where Λ ⊆ RK and φ∗,+ denotes the convex conjugate of φ
restricted to the positive real line:

φ∗+(z) = sup
w>0

zw − φ(w) (4)
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Specializing the MD problem to the Cressie Read Family

The methodology allows for any convex function φ.

Almeida & Garcia (JoE, 2012, Manag. Sci. 2017) note:

The Cressie Read family, φ(m) = (m)γ+1−1
γ(γ+1) , contains several

special cases of interest:

1 Hansen and Jagannathan (JPE, 1991, γ = 1): �linear�
discounting.

2 Empirical Likelihood (γ = −1): Bansal & Lehmann (MaDyn,
1997).

3 Exponential Tilting (γ = 0): Stutzer (JoE, 1995).

4 Hellinger (γ = −0.5): Kitamura et al. (ECTA, 2013).
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The Implied SDFs under Cressie Read

We can interpret CR dual problems as HARA utility
maximizing problems:

λ̂CR = arg sup
λ∈ΛCR

1

T

T∑
t=1

− 1

γ + 1

(
1 + γλ′Re,f

t

)( γ+1
γ

)
(5)

ΛCR = {λ ∈ RK |∀t = 1, . . . ,T (1 + γλ′Re,f
t ) > 0}

The implied SDF is recovered via the f.o.c of problem 5:

m̂t
MD = T ∗

(1 + γλ̂′CRR
e,f
t )

1
γ∑T

j=1(1 + γλ̂′CRR
e,f
j )

1
γ

(6)

Important Question: How does the choice of gamma a�ect
risk neutralization?
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Direct E�ect of Risk Neutralization
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Cressie-Read Discrepancy and Higher Moments

Taylor expanding the expected value of φ(m) = mγ+1−aγ+1

(γ(γ+1)) around

the SDF mean a.

E(φ(m)) =
aγ−1

2
E(m−a)2+

(γ − 1)aγ−2

3!
E(m−a)3+

(γ − 1)(γ − 2)aγ−3

4!
E(m−a)4+...

The weights given to skewness and kurtosis are respectively
(γ−1)aγ−2

3! and (γ−1)(γ−2)aγ−3

4!

Plotting the weights as a function of γ.
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Skewness and Kurtosis Weights in CR Discrepancies
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Applications

1 Information Frontiers (generalizing the minimum variance
frontiers) and tests of dynamic asset pricing models
Almeida and Garcia (2017), Economic Implications of

Nonlinear Pricing Kernels, Management Science.

2 Measures of model misspeci�cation
Almeida and Garcia (2012), Assessing misspeci�ed asset

pricing models with empirical likelihood estimators, Journal of
Econometrics

3 Evaluation of managed funds performance
Almeida, Ardison and Garcia (2018), Nonparametric

Assessment of Hedge Fund Performance, Working Paper.

4 Estimating a tail risk measure
Almeida, Ardison, Garcia and Vicente (2017), Nonparametric

Tail Risk, Stock Returns, and the Macroeconomy, Journal of
Financial Econometrics
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1. Information Frontiers

We need to vary the mean a of the SDF to generate the frontier.

The dual problem is written as:

λ̂CR = arg sup
λ∈ΛCR

1

T

T∑
i=1

− 1

γ + 1
(1+ γλ′

(
Ri −

1

a

)
)( γ+1

γ
)

(7)

The implied SDF is recovered via the �rst order conditions of the

problem: m̂i
MD = T ∗ a ∗ (1+γλ̂′CR(Ri− 1

a ))
1

γ∑T
j=1(1+γλ̂′

CR(Rj− 1

a ))
1

γ

The SDF-related frontier is found by solving (7) for a grid of values for
the SDF mean A = {a1, a2, ..., aJ}.
The SDF-related frontier is given by:

ICR(al , γ) =
1

T

T∑
i=1

m̂i
MD(al)

γ+1 − 1

γ(γ + 1)
, l = 1, 2, ..., J (8)
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Frontiers implied by Di�erent Data Sets

Garcia, René, UM and TSE Extracting SDFs



The Disaster Model

Barro model (2006): a disaster-like drop in aggregate consumption
growth produces a large equity premium and captures other non-normal
features of asset returns.

gt+1 = ηt+1 + Jt+1

ηt+1 is the normal component ℵ(µ, σ2); Jt+1 is a Poisson mixture of
normals.

The number-of-jumps variable j takes integer values with probabilities

e−τ τ
j

j!
, where τ is the jump intensity. Conditionally on the number of

jumps, Jt is normal:
Jt |j ∼ ℵ(jα, jλ2).

The logarithm of the stochastic discount factor with power utility is:

logmt+1 = log β − ζgt+1

where ζ is the coe�cient of relative risk aversion.
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Diagnosing a Poisson Disaster Model Based on Entropic Bounds.
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The Long-run Risk Model

The consumption growth process includes a small long-run predictable
component in consumption growth and a �uctuating consumption
volatility to capture economic uncertainty.

gt+1 = µ+ xt + σtηt+1

xt+1 = ρxt + ϕeσtet+1

σ2t+1 = σ2 + ν(σ2t − σ2) + σwwt+1 (9)

where gt is the logarithm of real consumption growth. All innovations are
ℵ, i .i .d .(0, 1).
The logarithm of the intertemporal marginal rate of substitution (IMRS)
is:

mt+1 = θ log δ − θ

ψ
gt+1 + (θ − 1)ra,t+1

where ra,t+1 is the return on the wealth portfolio.
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Sensitivity of Entropic Discrepancies to the Persistence of Volatility and Consumption Growth in

the Long Run Risk Model.
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2. Fund Performance Measurement

A new class of SDF-based performance measures:

αγi = E [m(Re,f , γ).Re,HF
i ]

1 Empirically identi�ed nonparametric SDFs that give more
weight to returns in �bad� states of nature

2 Estimated SDFs are positive (consistent with no-arbitrage):
Suitable for performance measurement.

3 Beyond mean and variance: Measures incorporate information
about higher-order mixed co-moments

E [Re,HF
i , (λ′.Re,f )j ]j=1,2,....

4 Flexibility: Varying speci�cations allow for di�erent exposures
to higher-order co-moments.
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Hedge Fund Alpha as a Function of Co-moments

Consider the implied SDF mγ(Re,f
t ) = (1 + γλ′Re,f

t )1/γ , with
W = λ′Re,f representing the endogenously-implied wealth
return.

De�ne the risk-adjusted HF return:
m.Re,HF

i = fm,i (W ) = (1 + γW )1/γRe,HF
i

Taylor expanding fm,i (W ) around E [W ], noting that
αi = E [fm,i (W )], and taking E(.), we obtain:

αi = (1 + γE (W ))1/γE (Re,HF
i )

− (1 + γE [W ])
1−γ
γ E [Re,HF

i (W − E (W ))]

+
1

2
(1− γ)(1 + γE [W ])

1−2γ
γ E [Re,HF

i (W − E (W ))2]

− 1

6
(1− γ)(1− 2γ)(1 + γE [W ])

1−3γ
γ E [Re,HF

i (W − E (W ))3] + . . .
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Basis Assets

�Linear� traded portfolios:

1 CAPM: CRSP Value Weighted Market Portfolio.

2 Fama, French, and Carhart four factor model.
3 Fung and Hsieh (RFS, 2001) linear factors:

S&P 500, size spread (Russell 2000 - S&P 500), 10-y bond,
credit spread (BAA - bond), and Emerging Market risk.

Including non-linear basis assets:

1 Fung and Hsieh (RFS, 2001) Trend following factors: PTFS
factors for stocks, bonds, interest rates, FX and commodities.

2 Agarwal and Naik (RFS, 2004): ATM and OTM Put and Call
portfolios.
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Empirical Results: SDF Features

General Results:

1 Across all γ′s and basis assets pricing errors are smaller than
0.1 basis points.

2 All SDFs load positively on the market index returns
(statistically signi�cant).

Speci�c Results:

1 Fama, French and Carhart:
1 High minus Low portfolio: Positive load, marginally signi�cant.
2 Momentum: Positive load, statistically signi�cant.

2 Fung and Hsieh:
1 Stock Index Lookback Straddle: Negative Load, statistically

signi�cant.

3 Agarwal and Naik: Investors sell OTM puts and hedge their
position issuing ATM puts (statistically signi�cant λs).
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Implied SDF Time Series
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Hedge Fund Indices - Alphas Agarwal and Naik

γ -3.5 -2 -1 -0.5 0 0.5 1 Lin

Convertible Arbitrage 0.33 0.33 0.30 0.27 0.26 0.25 0.25 0.25
T (Boot) (2.38) (2.48) (2.42) (2.22) (2.02) (1.95) (1.89) (1.43)
CTA 0.43 0.52 0.58 0.60 0.61 0.61 0.61 0.61
T (Boot) (2.21) (3) (3.85) (4.34) (4.43) (4.52) (4.38) (4.83)
Emerging Markets 0.27 0.23 0.21 0.22 0.25 0.28 0.31 0.33
T (Boot) (1.33) (1.27) (1.22) (1.42) (1.58) (1.96) (2.17) (2.17)
Equity Market Neutral 0.38 0.36 0.34 0.33 0.33 0.33 0.33 0.33
T (Boot) (4.45) (4.79) (5.53) (5.54) (5.75) (5.8) (5.92) (5.52)
Event Driven 0.45 0.42 0.39 0.38 0.38 0.38 0.39 0.39
T (Boot) (3.74) (3.81) (4.26) (4.49) (4.71) (4.96) (5.15) (4.95)
Fixed Income Arbitrage 0.25 0.30 0.32 0.32 0.33 0.33 0.33 0.34
T (Boot) (1.8) (2.41) (3) (3.12) (3.32) (3.47) (3.76) (3.35)
Fund of Funds 0.10 0.14 0.15 0.15 0.16 0.16 0.17 0.17
T (Boot) (1.01) (1.54) (1.91) (1.98) (2.07) (2.3) (2.36) (2.36)
Global Macro 0.26 0.35 0.37 0.38 0.38 0.39 0.40 0.41
T (Boot) (1.71) (2.54) (3.17) (3.45) (3.63) (3.82) (3.78) (3.81)
Long/Short Equity Hedge 0.29 0.31 0.33 0.34 0.34 0.35 0.36 0.36
T (Boot) (3.68) (3.95) (4.41) (4.59) (4.53) (4.82) (4.69) (4.1)
Managed Futures 0.43 0.60 0.67 0.70 0.71 0.72 0.73 0.72
T (Boot) (1.37) (2.18) (2.92) (3.3) (3.44) (3.47) (3.42) (3.65)
Multi-Strategy 0.32 0.35 0.35 0.35 0.36 0.36 0.36 0.37
T (Boot) (4.18) (4.95) (5.84) (5.96) (5.86) (6.31) (6.26) (5.82)
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3. Estimating Tail Risk

1. VaR / expected shortfall procedures using historical data.

2. Using options or other crash-sensitive assets.

Parametric assumptions about returns distributions. (Bates,
2000; Pan, 2002)

Short-maturity OTM options and high-frequency intraday
returns to obtain jump tail risk. (Bollerslev and Todorov,
2011).

3. Making use of cross-sectional data of equity returns.

Common systematic tail risk factor (Kelly and Jiang, 2014)

Copulas: Lower tail dependence with market (Ruenzi and
Weigert, 2013)
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A New Tail Risk Measure

Estimate a Tail Risk factor from a panel of equity returns.

Euler equations allow us to extract risk-premia information
embedded in those returns through a risk-neutral measure.

Making use of Minimum Discrepancy theory we identify one
RN measure, from which we obtain a Tail Risk factor.

Mixed solution between pure historical procedures (VaR) and
cross-sectional ones, but distorting probabilities with a RN
measure.

Garcia, René, UM and TSE Extracting SDFs



From a RN measure to a Tail Risk factor

We de�ne our tail risk factor as the average of the risk-neutral
excess expected shortfalls for each asset i at time t:

TRi ,t = EQ(R)[(Ri ,τ−VaRα(Ri ,τ ))|(Ri ,τ ≤ VaRα(Ri ,τ ))] (10)

where τ denotes the possible states of nature, α is the VaR
threshold, and Q(R) refers to the risk neutral density
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Our Tail Risk Measure

1. No need for a liquid option market and cross-section more informative

than market portfolio.

Alternative way to Ait-Sahalia and Lo (2000) for extracting a
RN measure. Generalizes to multiple assets.

2. Consistent with economic theory

Ait-Sahalia and Lo (2000) - Economic VAR; Giacomini and
Ragusa (2013) - Forecasting with Euler conditions constraints.
Time-varying risk aversion - Market fears (Bollerlev &
Todorov, 2011); Generalized disappointment aversion:
Countercyclical risk-aversion (Routledge and Zin, 2010)

3. By choosing the time length of the window in the panel of data, we
control how our measure reacts to changes in market conditions (we will
calculate tail risk at a monthly frequency, thus states of nature (τ) will be
daily returns).
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Construction of the Tail Risk Measure

Data: Daily returns on the 25 size and book to market Fama and French
portfolios from June 1926 to April of 2014.

Our tail risk factor is a monthly factor.

The RNDs are estimated adopting a short panel of 30 days.

Measure is based on 5 �rst principal components of the 25 portfolios (see
Kosak, Nagel and Santosh, 2015).

We estimate the RND that solves the Cressie Read problem with
γ = −0.5 (Hellinger measure).

 
Table 1: Principal  Component Variance 

 

Principal Component        1       2       3       4       5 
 

Variance (Cumulative)   0.62  0.76  0.83  0.86  0.89 
 

This table present the first five principal components cumulative  
variance.  Principal component  analysis was performed for the  
hole sample for the 25 Fama and French size and book to market 
portfolios. 
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From a RN measure to a Tail Risk factor

We compute the risk neutral expected shortfall for each
principal component at the �rst decile of its return
distribution.

We de�ne our tail risk factor as the average of these �ve
shortfalls.

The factor is high when equity returns are low.

The risk-neutral expected shortfall corresponds up to a
translation to a put price.
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Time Series of Hellinger Tail risk Measure
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Correlation with other tail risk measures

Option based tail risk:
1 Bollerslev, Todorov and Xu (2014).
2 VIX.

Not option based:
1 Bloom (2009)
2 Kelly and Jiang (2014).
3 Allen, Bali and Tang (2012)- CATFIN
4 Bali, Brown and Tang (2014) - Macro 

Table 2:   Correlations  with  Other   Tail  Risk  Measures  and  Financial  and 

Macroeconomic Indicators 
 

 
 

Hellinger 
 

S&P 500 
 

CRSP 
 

Bloom 
 

KJ 
 

BTX 
 

VIX 
 

Macro 
 

Hellinger 
 

1.0000 
       

S&P 500 -0.3210 1.0000       

CRSP -0.2433 0.9842 1.0000      

Bloom 0.4572 -0.1333 -0.1498 1.0000     

KJ -0.0723 0.0854 0.0802 -0.0202 1.0000    

BTX 0.4303 -0.1293 -0.1341 0.3726 -0.2289 1.0000   

VIX 0.5581 -0.3723 -0.3709 0.9288 -0.3820 0.6625 1.0000  

Macro 0.4684 -0.0578 -0.0243 0.5809 -0.2210 0.4395 0.5548 1.0000 

CATFIN 0.4507 -0.4146 -0.4385 0.3811 -0.0819 0.5206 0.6463 0.5422 
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Hellinger Tail risk Measure and Option-Based Tail Risk

Measure
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Cross-Sectional Equity Returns

1 We sort NYSE/AMEX/NASDAQ stocks into portfolios
according to their sensitivity to our tail risk measure
(interpreted as a hedging beta).

R i
t − R f

t = αi
t + γ itTRt + εt (11)

2 We then track each portfolio return one month and one year
ahead after the sorting.

3 We then control for various factors and compute the alphas
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Sorted Portfolios - Comparison Option and Hellinger -

One-month holding period - 1996 - 2014

 

Table 3: Option vs. Hellinger Sorted Portfolios 
 

 
Option Implied Tail Risk 

 

 
Portfolio 

 
Low 

 
2.00 

 
3.00 

 
4.00 

 
5.00 

 
6.00 

 
7.00 

 
8.00 

 
9.00 

 
High 

 
High - Low 

Average Return 4.63 2.13 2.48 1.26 1.78 1.17 0.85 0.97 0.81 0.90 -3.73 
 (2.57) (2.29) (2.49) (1.54) (1.86) (1.55) (1.33) (1.64) (1.23) (1.72) (2.35) 
FF3 3.51 1.47 1.74 0.50 1.15 0.55 0.31 0.40 0.36 0.56 -2.96 

 (2.22) (1.53) (1.76) (0.62) (1.14) (0.72) (0.44) (0.71) (0.52) (1.00) (2.15) 
FF3+MOM 3.72 1.32 1.54 0.47 0.93 0.48 0.30 0.45 0.31 0.64 -3.08 

 (2.02) (1.41) (1.59) (0.60) (1.01) (0.65) (0.45) (0.81) (0.48) (1.19) (1.84) 
FF3+MOM+LIQ 4.43 1.37 1.59 0.41 1.08 0.60 0.37 0.41 0.50 0.63 -3.80 

 (1.72) (1.26) (1.42) (0.46) (0.91) (0.68) (0.49) (0.67) (0.62) (1.03) (1.60) 
FF3+MOM+LIQ+VOL -0.89 0.92 0.85 -0.19 -0.37 -0.22 0.71 0.13 0.03 1.43 2.32 

 (0.33) (0.51) (0.49) (0.12) (0.25) (0.16) (0.59) (0.12) (0.03) (1.56) (1.02) 
 

Hellinger Tail Risk 
 
Portfolio 

 
Low 

 
2.00 

 
3.00 

 
4.00 

 
5.00 

 
6.00 

 
7.00 

 
8.00 

 
9.00 

 
High 

 
High - Low 

Average Return 4.48 2.71 2.20 1.22 1.88 0.84 0.73 0.63 0.88 1.42 -3.06 
 (2.52) (2.44) (2.27) (1.53) (1.96) (1.25) (1.20) (1.12) (1.52) (2.18) (2.03) 
FF3 3.37 1.92 1.48 0.49 1.27 0.30 0.22 0.21 0.32 0.97 -2.40 

 (2.17) (1.72) (1.52) (0.62) (1.29) (0.43) (0.36) (0.36) (0.54) (1.35) (1.87) 
FF3+MOM 3.67 1.53 1.28 0.37 1.15 0.26 0.19 0.17 0.48 1.05 -2.63 

 (2.04) (1.44) (1.36) (0.48) (1.28) (0.38) (0.33) (0.30) (0.82) (1.51) (1.67) 
FF3+MOM+LIQ 4.39 1.74 1.34 0.36 1.35 0.19 0.15 0.19 0.44 1.25 -3.14 

 (1.73) (1.34) (1.21) (0.42) (1.17) (0.25) (0.23) (0.29) (0.66) (1.58) (1.36) 
FF3+MOM+LIQ+VOL -0.01 0.26 0.90 -0.09 0.13 0.02 -0.41 -0.02 0.15 1.48 1.49 

 (0.00) (0.15) (0.51) (0.07) (0.09) (0.01) (0.37) (0.02) (0.14) (1.16) (0.72) 
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Sorted Portfolios Hellinger RN - High minus Low -

1967-2014

Table 1: Sorted Portfolios Hellinger RN - High minus Low - 1967-2014

Panel A: One Month Holding Period

Portfolio Size-BM Objective Shortfall CRSP Industry Financial Real

Average Return -1.52 -0.67 -1.28 -1.44 -1.9 -1.57
(-3.41) (-2.50) (-2.98) (-3.30) (-3.90) (-3.73)

FF3 -1.15 -0.46 -0.98 -1.13 -1.34 -1.16
(-3.09) (-1.95) (-2.59) (-2.99) (-3.29) (-3.27)

FF3+MOM -1.2 -0.46 -1.05 -1.17 -1.4 -1.21
(-3.10) (-1.99) (-2.69) (-3.02) (-3.34) (-3.30)

FF3+MOM+LIQ -1.28 -0.42 -1.13 -1.22 -1.52 -1.31
(-2.79) (-1.81) (-2.42) (-2.65) (-3.14) (-2.99)

FF3+MOM+LIQ+VOL -0.83 0.12 -0.77 -0.79 -0.81 -0.9
(-1.80) (0.46) (-1.73) (-1.76) (-1.96) (-2.19)

Panel B: One Year Holding Period

Portfolio Size-BM Objective Shortfall CRSP Industry Financial Real

Average Return -13.84 -7.47 -9.88 -12.05 -18.18 -14.15
(-3.10) (-2.38) (-2.92) (-3.36) (-3.91) (-3.54)

FF3 -3.17 -1.19 -4.2 -4.28 -7.45 -4.16
(-1.16) (-0.45) (-1.31) (-1.90) (-2.19) (-1.72)

FF3+MOM -4.99 -0.17 -3.21 -4.67 -9.39 -4.66
(-2.01) (-0.09) (-1.32) (-2.31) (-3.02) (-2.12)

FF3+MOM+LIQ -4.98 0.79 -3.1 -5.72 -10.67 -5.61
(-2.05) (0.42) (-1.16) (-2.62) (-3.32) (-2.51)

FF3+MOM+LIQ+VOL 11.56 16.59 5.85 -3.15 9.87 7.62
(1.03) (1.75) (1.08) (-0.57) (0.87) (0.80)

1
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4. Estimation of misspeci�ed asset pricing models

Given an asset pricing model y(θ), HJ (1997) measure its degree of
misspeci�cation by minimizing its quadratic distance to the set of
admissible SDFs:

δHJ(θ)
2 = min

m∈L2(y)
E{(m − y(θ))2} subject to E(mx) = π(x) = q.

HJ (1997) suggest estimating the parameter vector θ by minimizing the
HJ distance:

argmin
θ∈<k

(Exy(θ)− q)′Exx ′−1(Exy(θ)− q)

as an estimator alternative to the GMM (Hansen (1982)), where Exx ′−1

is replaced by W , a symmetric positive de�nite matrix that usually
depends on the proxy model y .
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Estimating misspeci�ed models with minimum discrepancy

Given a proxy asset pricing model y(θ), and a convex discrepancy
function φ, �nd an admissible SDF which is as close as possible to y(θ) in
the φ discrepancy sense:

δMD(θ) = min
m∈L2(y)

E{φ(1+m − y(θ))} subject to E(mx) = q

where L2(y) = {m ∈ L2,m >> y(θ)− 1}.
These problems should be of interest when either the asset pricing proxy
model y(θ) can depend nonlinearly on the underlying primitive securities
or when the underlying primitive securities themselves include assets with
non-Gaussian returns.

HJ (1997) is a particular case when φ(π) = π2.
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Solving the Problem for Cressie Read Discrepancies

Let φ belong to the Cressie Read family: φ(π) = πγ+1−1
γ(γ+1)

. For a �xed θ,

the optimization problem specializes to:

δCR(θ) = min
m∈L2(y)

E

{
(1+m − y(θ))γ+1 − 1

γ(γ + 1)

}
subj. to E(mx) = q

(12)

For this family, Newey and Smith (2004) show that the dual belongs to
the class of GEL estimators. The GEL problem dual to the MD problem
is given by:

vCR(θ) = max
λ∈<n

λ′q−E

{
(γλ′x)

γ+1
γ

γ + 1
+ (y(θ)− 1)λ′x +

1

γ(γ + 1)

}
(13)
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Asset pricing proxy and admissible SDF

The admissible SDF which is closest to the asset pricing proxy y is given
by:

mCR(θ) = y(θ)− 1+ (γλ′∗x)
1

γ

where λ∗ is the solution of the optimization problem (13).

These solutions give additive correction terms to the proxy y that are
nonlinear functions of the optimal linear combinations of primitive assets'
payo�s λ′MDx , which are the smallest corrections (in the φ divergence
sense) for y to become an admissible SDF

As a particular case, the HJ admissible SDF is given by a linear correction
m̂HJ(θ) = y − λ′HJx .
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Model Estimation Based on Minimum Discrepancy

Researchers have been using the HJ (1997) distance to estimate asset
pricing models by �nding the parameter vector θ∗ that minimizes this
distance.

Following Kitamura (2006) and the whole literature on MD estimators,
we propose estimating the above asset pricing models by �nding the
parameter vector θMD that minimizes any speci�c discrepancy function:

θMD = argmin
θ∈<k

δMD(θ),

When the discrepancy belongs to the Cressie Read family:

θCR = argmin
θ∈<k

max
λ∈<N−1

λ′q−E

{
(γλ′x)

γ+1
γ

γ + 1
+ (y(θ)− 1)λ′x +

1

γ(γ + 1)

}
,

Garcia, René, UM and TSE Extracting SDFs



Asymptotic Properties of the Estimators

In order to be able to perform hypothesis tests with the new proposed
discrepancy measures, we develop the statistical properties of our
estimators.

We analyze the asymptotic properties of our MD estimators considering
that the asset pricing models analyzed are misspeci�ed.

Under the same set of assumptions provided by Kitamura and
Stutzer(1997) and Kitamura (2000), we prove consistency and asymptotic
normality of our estimators for the family of Cressie Read discrepancies.

We provide an application to the canonical CCAPM (estimation of the
risk aversion parameter).
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Conclusion

1 We propose a methodology to elicit positive admissible SDFs
that price exactly a set of basis assets (risk factors).

2 We use these SDFs to construct information frontiers to
evaluate the admissibility of models that imply nonlinear
dynamics of fundamentals and distributions of returns with
skewness and kurtosis.

3 We use these SDFs to measure performance of hedge funds.

4 We build measures of tail risk based on risk-neutralized returns
of portfolios.

5 We provide estimators of the parameters of the asset pricing
models that minimize the distance to admissible SDFs (a
measure of misspeci�cation).
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