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Survey of four papers

© Information Frontiers (generalizing the minimum variance
frontiers) and tests of dynamic asset pricing models
Almeida and Garcia (2017), Economic Implications of
Nonlinear Pricing Kernels, Management Science.

@ Measures of model misspecification
Almeida and Garcia (2012), Assessing misspecified asset
pricing models with empirical likelihood estimators, Journal of
Econometrics

© Evaluation of managed funds performance
Almeida, Ardison and Garcia (2018), Nonparametric
Assessment of Hedge Fund Performance, Working Paper.

@ Estimating a tail risk measure
Almeida, Ardison, Garcia and Vicente (2017), Nonparametric
Tail Risk, Stock Returns, and the Macroeconomy, Journal of
Financial Econometrics
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Financial Theory and Stochastic Discount Factor

@ The central idea of modern finance is that prices are generated by
expected discounted payoffs

Pi = Et(mt+1Xg+1)

@ The discount factor m;1 is equal to the growth in the marginal value of

wealth
VW(t +1)

VW(t)
@ The traditional theories of finance, CAPM, ICAPM, and APT, measure
the marginal utility of wealth by the behavior of large portfolios of assets.

M1 =

v" CAPM: return on the market portfolio.
V" Multifactor models: returns on multiple portfolios.

@ To make the link between the real economy and financial markets, we
measure the growth in marginal utility of wealth by the growth in
consumption (Consumption CAPM).

v ldea that consumption is the payoff on the market portfolio.
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Linear Factor Models

@ In a linear factor model, asset returns are described by the following
process:

Ri=aj +bj f +eir

Eler | f]=0
R+ return at time t for asset /
a; intercept of the factor model
bi (K x 1) vector of factor sensitivities for asset i
fr a (K x 1) vector of common factor realizations at time ¢

eir disturbance term.
@ The SDF is of the form:

!
M1 = a+ B fia

@ Asset i can be an individual security, a portfolio or a managed fund.

@ Factors can be observed (returns on some portfolios or macroeconomic
variables) or latent (obtained by some statistical procedure).
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Consumption Capital Asset Pricing Model (CCAPM)

(oo}

Max(c, w; 1) Et > BU(Ceyi),i=1,..,n
i=0

under the constraint:

n n
Ce+ Y piewierr < Y (Pit + Die)wie + e

i=1 i=1

@ One consumption good, infinite horizon, additive and time separable utility

@ p;; = price of asset i at time t; D;; = dividend paid on asset i at t, beginning of
period; wj; = units of asset i held at beginning of period t; y; = labor income
exogenous at time t.

@ Fist-order condition:

U,(Cf) = BE: [Ri,t+1 U,(Ct+1)}

E=
g —

Rie418 (c;)] =1 (1)
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E;




Bringing the Models to the Data

The asset pricing model predicts:
E(p:) = E[m(datasy1, parameters)xei1]

A natural way to check this prediction is to examine sample averages:

T T

1 1

7 Z p: and 7 Z[m(dataHL parameters ) xe+1]
t=1 t=1

The Generalized Method of Moments (GMM) estimates the parameters
by making the sample averages as close to each other as possible.

GMM evaluates the model by looking at how close the sample averages of
price and discounted payoff are to each other (how small the pricing
errors are).

Other methods such as maximum likelihood impose stricter restrictions
on distributions.

For linear models, by far the most common in empirical asset pricing,
regression-based methods (cross-sectional and time-series) are the
standard.

One important remark: all models lead to pricing errors (another way of
saying all models are misspecified).
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Existence of SDFs with weaker assumptions

@ From p = E(mx) can we always find a SDF without assuming all the
structure of investors, utility functions, complete markets, linear relations,
and so forth?

@ Two weaker restrictions: the /aw of one price and the absence of
arbitrage, help us in this direction.

@ Law of one price: If two portfolios have the same payoffs (in every state
of nature), then they must have the same price.

@ A first theorem states that there is a discount factor that prices all the
payoffs by p = E(mx) if and only if the law of price holds.

@ Absence of arbitrage: If payoff A is always at least as good as payoff B
and sometimes better then the price of A must be greater than the price
of B.

@ A second theorem states that there is a positive discount factor that
prices all the payoffs by p = E(mx) if and only if there are no arbitrage
opportunities and the law of one price holds.

@ All that is required from investors is that they do not leave law of one
price violations or arbitrage opportunities on the table.

Garcia, René, UM and TSE Extracting SDFs



How to find empirically such SDFs

These theorems say that there exists a positive discount factor (m > 0)
but they do not say that it is unique.

These theorems say that there exists a positive discount factor (m > 0)
but they do not say that every discount factor must be positive (in every
state of nature).

Given a K-dimensional set of benchmark factors' excess returns (equity,
bonds, options, etc...) R®’ and a risk-free rate Rr, any candidate SDF m
must correctly price:

o The factors’ excess returns: E[m.R®f] = Ok.

o and the risk-free asset: E[m] = R% (here we assume Rf = 1).

If markets are incomplete, and LOOP holds, an infinity of possible
candidates for m exists.

If, in addition, there is no (in-sample) arbitrage, at least one strictly
positive m exists.

Fundamental Question: How to empirically identify strictly positive SDF
candidates m in a meaningful way?
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A first answer: Hansen and Jagannathan (1991)

@ HJ derive a SDF m that is a linear combination of a set of basis asset
returns R and that obeys: E[mR] = 1.

@ They look for a minimum-variance m since the mean-variance frontier of
all discount factors that price a given set of assets is related to the
mean-variance frontier of asset excess returns by:

o(m) _ |E(R")
E(m) = o(Re)
@ which implies a nice duality:

e
min a(m) = max 7‘E(R )
~ E(m) ~ o(Re)

all m that price the basis assets all excess returns on basis assets

@ They derive SDFs without positivity constraint (the SDF may be negative
in some states of nature) or with positivity constraint (the SDF is set to
zero in states of nature where it is negative).
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A More General Class of Admissible SDFs

@ Why not consider all strictly positive admissible SDFs?
v Set is too large. There is no empirical guideline on how to
identify all strictly positive SDFs.

However, a possible way to select specific strictly positive SDFs is
provided by Almeida and Garcia (Manag. Sci., 2017):

Given a convex discrepancy (penalty) function ¢(m), we define the
minimum discrepancy problem as:

mpyp = arg rr(;in E[p(m)]
m>

subject to  E[m.R®"] = 0k (1)
Elm =1

where m is the “best” available candidate in the discrepancy sense.
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Estimating SDFs: Sample Version

’ E 2 f
@ Assume that factors’ returns have realizations R .

@ Now, any SDF must correctly price factors’ excess returns, in
sample:

.

1

=Y mRY =0k (2)
t=1

@ The sample version of the Minimum Discrepancy implied SDF
is obtained by:

Mpp = arg min iT Z;l d(me),
{ml,...m-r

T o T
st F > MmRY =0k, +> ;1 me=1,m > 0Vt.
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Solving a MD Problem in the Dual Space

It is simpler to solve the original primal discrepancy problem in the
dual space (Borwein and Lewis, SICON, 1991):

-

~ (6% 1 f

A=arg sup — — > —o*T (a + VRS > , (3)
acR ren Rr ; T f

where A C R¥ and ¢** denotes the convex conjugate of ¢
restricted to the positive real line:

"t (2) = sty g — P(w) (4)
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Specializing the MD problem to the Cressie Read Family

@ The methodology allows for any convex function ¢.

@ Almeida & Garcia (JoE, 2012, Manag. Sci. 2017) note:

@ The Cressie Read family, ¢(m) = % contains several

special cases of interest:

© Hansen and Jagannathan (JPE, 1991, v = 1): “linear”
discounting.

@ Empirical Likelihood (v = —1): Bansal & Lehmann (MaDyn,
1997).

© Exponential Tilting (7 = 0): Stutzer (JoE, 1995).
Q Hellinger (v = —0.5): Kitamura et al. (ECTA, 2013).
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The Implied SDFs under Cressie Read

@ We can interpret CR dual problems as HARA utility
maximizing problems:

A 1 1 A (
ACrR = arg sup—  —— (1 +NRY ) K 5
)\E/\CR T ; ’Y + 1 ' ( )

T 2y

Aer={AeRKVt=1,...,T (1+NR>") > 0}
@ The implied SDF is recovered via the f.o.c of problem 5:

Q 1

(4R
T 3 2
Zj:l(l + VXCRB}E )

@ Important Question: How does the choice of gamma affect
risk neutralization?

(6)
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Direct Effect of Risk Neutralization
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Cressie-Read Discrepancy and Higher Moments

YL gt

W around

@ Taylor expanding the expected value of ¢(m) =
the SDF mean a.

. o o
Eo(m) = 2 B+ O D72 gy (=10 =272

E(m—a)*+...

@ The weights given to skewness and kurtosis are respectively
(=Da % g =NG=2)a" 3
30 il a1

@ Plotting the weights as a function of .
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Skewness and Kurtosis Weights in CR Discrepancies

Weights on Skewness for the HARA function implied by Cressie Read Estimators Weights on Kurtosie for the HARA function implied by Cressie Read Estimators
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Applications

© Information Frontiers (generalizing the minimum variance
frontiers) and tests of dynamic asset pricing models
Almeida and Garcia (2017), Economic Implications of
Nonlinear Pricing Kernels, Management Science.

@ Measures of model misspecification
Almeida and Garcia (2012), Assessing misspecified asset
pricing models with empirical likelihood estimators, Journal of
Econometrics

© Evaluation of managed funds performance
Almeida, Ardison and Garcia (2018), Nonparametric
Assessment of Hedge Fund Performance, Working Paper.

@ Estimating a tail risk measure
Almeida, Ardison, Garcia and Vicente (2017), Nonparametric
Tail Risk, Stock Returns, and the Macroeconomy, Journal of
Financial Econometrics
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1. Information Frontiers

@ We need to vary the mean a of the SDF to generate the frontier.

@ The dual problem is written as:

Q 1 T 1 1 (’Y+1)
ACr = arg sup— —— 1+ A(R;—f) D 7
R Agel\CRp T— v+ 1( a ) (7)

@ The implied SDF is recovered via the first order conditions of the
1
. S (R—1)) 7
problem: My, = T x a* (IHACT(R’ ) I
ELa A (R=3) 7
@ The SDF-related frontier is found by solving (7) for a grid of values for
the SDF mean A = {a1, a2, ..., a,}.

@ The SDF-related frontier is given by:

Myp(a 1
Icr(ar, ) TZ%,I:I,Z...,J 8)
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Frontiers implied

Cressie Read (garmms=-3) Frontiers for Fama French Factors and Industry Portfalios
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The Disaster Model

@ Barro model (2006): a disaster-like drop in aggregate consumption
growth produces a large equity premium and captures other non-normal
features of asset returns.

gtr1 = Ner1 + Jena

Ner1 is the normal component X(p, 02); Jey1 is a Poisson mixture of
normals.

@ The number-of-jumps variable j takes integer values with probabilities
e~ where 7 is the jump intensity. Conditionally on the number of

K
jumps, J; is normal:
Jelj ~ R(ja, jA%).
@ The logarithm of the stochastic discount factor with power utility is:

log me1 = log 8 — Cge+1

where ( is the coefficient of relative risk aversion.
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Diagnosing a Poisson Disaster Model Based on Entropic Bounds.

Poisson Disaster Model with Gressie Read (gamma=1) Bound with Options Poisson Disaster Model with Cressie Read (gamma=1) Bound with Options
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The Long-run Risk Model

@ The consumption growth process includes a small long-run predictable
component in consumption growth and a fluctuating consumption
volatility to capture economic uncertainty.

8t+1 = U+ Xt + OtNe+1
Xt+1 = PXt + PeOt€t+1

ots1 = 0" +v(0f —0°) + TuWii (9)

where g; is the logarithm of real consumption growth. All innovations are

N, i.i.d.(0,1).
@ The logarithm of the intertemporal marginal rate of substitution (IMRS)
is:

0
mey1 = 6flogd — ng + (0 —1)raes

where r; ¢41 is the return on the wealth portfolio.
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Sensitivity of Entropic Discrepancies to the Persistence of Volatility and Consumption Growth in

the Long Run Risk Model.
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2. Fund Performance Measurement

A new class of SDF-based performance measures:
o] = E[m(R*",~).R""]

© Empirically identified nonparametric SDFs that give more
weight to returns in “bad” states of nature

@ Estimated SDFs are positive (consistent with no-arbitrage):
Suitable for performance measurement.

© Beyond mean and variance: Measures incorporate information
about higher-order mixed co-moments
,HF ;
E[R?™,(N.R*V]jz1....

© Flexibility: Varying specifications allow for different exposures
to higher-order co-moments.
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Hedge Fund Alpha as a Function of Co-moments

o Consider the implied SDF m(R®") = (1 + v\ R®")1/7, with
W = NR®f representing the endogenously-implied wealth
return.

@ Define the risk-adjusted HF return:
m.REMF = £ (W) = (1 +yW) /7 REHF

o Taylor expanding fy, (W) around E[W], noting that
aj = E[fy i(W)], and taking E(.), we obtain:
aj = (L+ 7 E(W)ERS)
~ (L EW]) T EIRT (W — E(W))]

5L+ AEW]) T E[R-@”F(vv ~ EW)Y]
1
"5

(1 - 7)1 - 27)(1 +EW]) = (W — E(W))*] +
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“Linear” traded portfolios:

@ CAPM: CRSP Value Weighted Market Portfolio.
@ Fama, French, and Carhart four factor model.

© Fung and Hsieh (RFS, 2001) linear factors:

e S&P 500, size spread (Russell 2000 - S&P 500), 10-y bond,
credit spread (BAA - bond), and Emerging Market risk.

Including non-linear basis assets:

© Fung and Hsieh (RFS, 2001) Trend following factors: PTFS
factors for stocks, bonds, interest rates, FX and commodities.

@ Agarwal and Naik (RFS, 2004): ATM and OTM Put and Call
portfolios.
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Empirical Results: SDF Features

General Results:

© Across all /s and basis assets pricing errors are smaller than
0.1 basis points.

@ All SDFs load positively on the market index returns
(statistically significant).

Specific Results:

@ Fama, French and Carhart:
@ High minus Low portfolio: Positive load, marginally significant.
©® Momentum: Positive load, statistically significant.

@ Fung and Hsieh:
@ Stock Index Lookback Straddle: Negative Load, statistically
significant.
© Agarwal and Naik: Investors sell OTM puts and hedge their
position issuing ATM puts (statistically significant As).

Garcia, René, UM and TSE Extracting SDFs



Implied SDF Time Series

CAPM Fama, French and Carhart
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Hedge Fund Indices - Alphas Agarwal and Naik

0% -3.5 -2 -1 -0.5 0 0.5 1 Lin

Convertible Arbitrage 0.33 0.33 0.30 0.27 0.26 0.25 0.25 0.25
T (Boot) (2.38) (248) (2.42) (2.22) (2.02) (1.95) (1.89) (1.43)
CTA 0.43 0.52 0.58 0.60 0.61 0.61 0.61 0.61
T (Boot) (221) (3) (3.85) (4.34) (4.43) (452) (4.38) (4.83)
Emerging Markets 027 023 021 022 025 028 031 033
T (Boot) (1.33) (1.27) (1.22) (1.42) (1.58) (1.96) (2.17) (2.17)
Equity Market Neutral 038 036 034 033 033 033 033 033
T (Boot) (4.45) (4.79) (5.53) (5.54) (5.75) (5.8) (5.92) (5.52)
Event Driven 0.45 0.42 0.39 0.38 0.38 0.38 0.39 0.39
T (Boot) (3.74) (3.81) (4.26) (4.49) (4.71) (4.96) (5.15) (4.95)
Fixed Income Arbitrage 0.25 0.30 0.32 0.32 0.33 0.33 0.33 0.34
T (Boot) (1.8) (2.41) (3) (3.12) (3.32) (3.47) (3.76) (3.35)
Fund of Funds 0.10 0.14 0.15 0.15 0.16 0.16 0.17 0.17
T (Boot) (1.01) (1.54) (1.91) (1.98) (2.07) (2.3) (2.36) (2.36)
Global Macro 0.26 0.35 0.37 0.38 0.38 0.39 0.40 0.41
T (Boot) (1.71) (2.54) (3.17) (3.45) (3.63) (3.82) (3.78) (3.81)
Long/Short Equity Hedge ~ 0.29 0.31 0.33 0.34 034 035 0.36 0.36
T (Boot) (3.68) (3.95) (4.41) (4.59) (4.53) (4.82) (4.69) (4.1)
Managed Futures 043 060 067 070 071 072 073 072
T (Boot) (1.37) (218) (2.92) (3.3) (3.44) (347) (3.42) (3.65)
Multi-Strategy 032 035 035 035 036 036 036 037
T (Boot) (4.18) (4.95) (5.84) (5.96) (5.86) (6.31) (6.26) (5.82)
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3. Estimating Tail Risk

1. VaR / expected shortfall procedures using historical data.
2. Using options or other crash-sensitive assets.

e Parametric assumptions about returns distributions. (Bates,
2000; Pan, 2002)

e Short-maturity OTM options and high-frequency intraday

returns to obtain jump tail risk. (Bollerslev and Todorov,
2011).

3. Making use of cross-sectional data of equity returns.

o Common systematic tail risk factor (Kelly and Jiang, 2014)

o Copulas: Lower tail dependence with market (Ruenzi and
Weigert, 2013)
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A New Tail Risk Measure

o Estimate a Tail Risk factor from a panel of equity returns.

@ Euler equations allow us to extract risk-premia information
embedded in those returns through a risk-neutral measure.

@ Making use of Minimum Discrepancy theory we identify one
RN measure, from which we obtain a Tail Risk factor.

@ Mixed solution between pure historical procedures (VaR) and

cross-sectional ones, but distorting probabilities with a RN
measure.
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From a RN measure to a Tail Risk factor

@ We define our tail risk factor as the average of the risk-neutral
excess expected shortfalls for each asset / at time t:

TR+ = ESP(R; ; — VaR.(Ri-))|(Ri+ < VaRa(Ri-))] (10)

where 7 denotes the possible states of nature, « is the VaR
threshold, and Q(R) refers to the risk neutral density
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Our Tail Risk Measure

1. No need for a liquid option market and cross-section more informative
than market portfolio.

o Alternative way to Ait-Sahalia and Lo (2000) for extracting a
RN measure. Generalizes to multiple assets.

2. Consistent with economic theory

o Ait-Sahalia and Lo (2000) - Economic VAR; Giacomini and
Ragusa (2013) - Forecasting with Euler conditions constraints.

e Time-varying risk aversion - Market fears (Bollerlev &
Todorov, 2011); Generalized disappointment aversion:
Countercyclical risk-aversion (Routledge and Zin, 2010)

3. By choosing the time length of the window in the panel of data, we
control how our measure reacts to changes in market conditions (we will
calculate tail risk at a monthly frequency, thus states of nature (7) will be
daily returns).
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Construction of the Tail Risk Measure

@ Data: Daily returns on the 25 size and book to market Fama and French
portfolios from June 1926 to April of 2014.

@ Our tail risk factor is a monthly factor.
@ The RNDs are estimated adopting a short panel of 30 days.

@ Measure is based on 5 first principal components of the 25 portfolios (see
Kosak, Nagel and Santosh, 2015).

@ We estimate the RND that solves the Cressie Read problem with
v = —0.5 (Hellinger measure).

Table 1: Principal Component Variance

Principal Component 1 2 3 4 5

Variance (Cumulative) 0.62 0.76 0.83 0.86 0.89

This table present the first five principal components cumulative
variance. Principal component analysis was performed for the
hole sample for the 25 Fama and French size and book to market
portfolios.
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From a RN measure to a Tail Risk factor

@ We compute the risk neutral expected shortfall for each
principal component at the first decile of its return
distribution.

@ We define our tail risk factor as the average of these five
shortfalls.

@ The factor is high when equity returns are low.

@ The risk-neutral expected shortfall corresponds up to a
translation to a put price.
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Time Series of Hellinger Tail risk Measure
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Correlation with other tail risk measures

Option based tail risk:
@ Bollerslev, Todorov and Xu (2014).
Q VIX.

Not option based:
© Bloom (2009)
@ Kelly and Jiang (2014).
@ Allen, Bali and Tang (2012)- CATFIN
Q Bali, Brown and Tang (20143 - Macro

Table 2: Correlations with> Other Tafl Risk Measures and Financial and
Macroeconomic Indicators

Hellinger S&P 500 CRSP Bloom KJ BTX VIX Macro

Hellinger  1.0000
S&P 500 -0.3210 1.0000

CRSP -0.2433  0.9842 1.0000

Bloom 0.4572  -0.1333 -0.1498 1.0000

KJ -0.0723  0.0854 0.0802 -0.0202 1.0000

BTX 0.4303 -0.1293 -0.1341 0.3726 -0.2289 1.0000

VIX 0.5581 -0.3723 -0.3709 0.9288 -0.3820 0.6625 1.0000

Macro 0.4684 -0.0578 -0.0243 0.5809 -0.2210 0.4395 0.5548 1.0000
CATFIN  0.4507 -0.4146 -0.4385 0.3811 -0.0819 0.5206 0.6463 0.5422
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Hellinger Tail risk Measure and Option-Based Tail Risk

Measure
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Cross-Sectional Equity Returns

@ We sort NYSE/AMEX/NASDAQ stocks into portfolios
according to their sensitivity to our tail risk measure
(interpreted as a hedging beta).

Ri— Rl =0y + 7% TR + (11)

@ We then track each portfolio return one month and one year
ahead after the sorting.

© We then control for various factors and compute the alphas
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Sorted Portfolios - Comparison Option and Hellinger -

One-month holding period - 1996 - 2014

Table 3: Option vs. Hellinger Sorted Portfolios

Option Implied Tail Risk

Portfolio Low 200 300 400 500 600 7.00 800 9.00 High High-Low
Average Return 463 213 248 126 178 117 085 097 081 090  -3.73
(2.57) (2.29) (2.49) (1.54) (1.86) (1.55) (1.33) (1.64) (1.23) (1.72)  (2.35)
FF3 351 147 174 050 115 055 031 040 036 056  -2.96
(2.22) (1.53) (1.76) (0.62) (1.14) (0.72) (0.44) (0.71) (0.52) (1.00)  (2.15)
FF3+MOM 372 132 154 047 093 048 030 045 031 064  -3.08
(2.02) (1.41) (1.59) (0.60) (1.01) (0.65) (0.45) (0.81) (0.48) (1.19)  (1.84)
FF3+MOM+LIQ 443 137 159 041 108 060 037 041 050 063  -3.80
(1.72) (1.26) (1.42) (0.46) (0.91) (0.68) (0.49) (0.67) (0.62) (1.03)  (1.60)
FF3+MOM+LIQ+VOL -0.89 092 085 -0.19 -0.37 -022 071 013 003 1.43 2.32

(0.33) (051) (0.49) (0.12) (0.25) (0.16) (0.59) (0.12) (0.03) (1.56)  (1.02)

Hellinger Tail Risk

Portfolio Low 200 300 4.00 5.00 6.00 700 800 9.00 High High-Low
Average Return 448 271 220 122 188 084 0.73 0.63 0.88 1.42 -3.06
(252) (2.44) (2.27) (1.53) (1.96) (1.25) (1.20) (1.12) (1.52) (2.18)  (2.03)
FF3 337 192 148 049 127 030 022 021 032 097 -2.40
(217) (1.72) (1.52) (0.62) (1.29) (0.43) (0.36) (0.36) (0.54) (1.35)  (1.87)
FF3+MOM 367 153 128 037 115 026 019 017 048 105 -2.63
(2.04) (1.44) (1.36) (0.48) (1.28) (0.38) (0.33) (0.30) (0.82) (1.51)  (1.67)
FF3+MOM+LIQ 439 174 134 036 135 019 015 019 044 125 -3.14

(1.73) (1.34) (1.21) (0.42) (117) (0.25) (0.23) (0.29) (0.66) (1.58)  (1.36)
FF3+MOM+LIQ+VOL -0.01 026 090 -0.09 013 002 -0.41 -002 015 1.48 149
(0.00) (0.15) (0.51) (0.07) (0.09) (0.01) (0.37) (0.02) (0.14) (1.16)  (0.72)
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Sorted Portfolios Hellinger RN - High minus Low -

1967-2014

Table 1: Sorted Portfolios Hellinger RN - High minus Low - 1967-2014

Panel A: One Month Holding Period

Portfolio Size-BM  Objective Shortfall CRSP Industry Financial Real
Average Return -1.52 -0.67 -1.28 -1.44 -1.9 -1.57
(-3.41) (-2.50) (-2.98)  (-3.30) (-3.73)
FF3 -1.15 -0.46 -0.98 -1.13 -1.16
(-3.09) (-1.95) (-259)  (-2.99) (-3.27)
FF3+MOM -1.2 -0.46 -1.05 -1.17 -1.21
(-3.10) (-1.99) (-2.69)  (-3.02) (-3.30)
FF34+MOM+LIQ -1.28 -0.42 -1.13 -1.22 -1.31
(-2.79) (-1.81) (242)  (-2.65) (-2.99)
FF3+MOM+LIQ+VOL -0.83 0.12 -0.77 -0.79 -0.9
(-1.80) (0.46) (-1.73)  (-1.76) (-2.19)

Panel B: One Year Holding Period

Portfolio Size-BM  Objective Shortfall CRSP Industry Financial
Average Return -13.84 -7.47 -9.88 -12.05 -18.18
(-3.10) (-2.38) (2.92)  (-3.36)  (-3.91)
FF3 -3.17 -1.19 -4.2 -4.28 -7.45
(-1.16) (-0.45) (131)  (-1.90)  (-2.19)
FF34+MOM -4.99 -0.17 -3.21 -4.67 -9.39
(-2.01) (-0.09) (1.32) (231)  (-3.02)
FF3+MOM+LIQ -4.98 0.79 -3.1 -5.72 -10.67
(-2.05) (0.42) (-1.16)  (-2.62)
FF34+MOM+LIQ+VOL 11.56 16.59 5.85 -3.15
(1.03) (1.75) (1.08)  (-0.57)
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4. Estimation of misspecified asset pricing models

@ Given an asset pricing model y(6), HJ (1997) measure its degree of
misspecification by minimizing its quadratic distance to the set of
admissible SDFs:

61s(0)> = min E{(m y(6))?} subject to E(mx) = 7(x) = q.

melL2(y

@ HJ (1997) suggest estimating the parameter vector § by minimizing the
HJ distance:

argmin (Exy(0) — q) Exx'~'(Exy(0) — q)
OeRK

as an estimator alternative to the GMM (Hansen (1982)), where Exx’~!

is replaced by W, a symmetric positive definite matrix that usually
depends on the proxy model y.
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Estimating misspecified models with minimum discrepancy

@ Given a proxy asset pricing model y(6), and a convex discrepancy
function ¢, find an admissible SDF which is as close as possible to y(8) in
the ¢ discrepancy sense:

dvup(0) = min E{¢(1 + m — y(0))} subject to E(mx) = q

meL2(y)
where L*(y) = {m € [*, m >> y(0) — 1}.

These problems should be of interest when either the asset pricing proxy
model y(6) can depend nonlinearly on the underlying primitive securities
or when the underlying primitive securities themselves include assets with
non-Gaussian returns.

@ HJ (1997) is a particular case when ¢(7) = 7°.
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Solving the Problem for Cressie Read Discrepancies

xYtl_y
y(v+1)

For a fixed 0,

@ Let ¢ belong to the Cressie Read family: ¢(w) =
the optimization problem specializes to:

{ (L+m—y(0)" -1

Scr(0) = min E
)= o (v +1)

meL2(y)

} subj. to E(mx) = ¢
(12)
@ For this family, Newey and Smith (2004) show that the dual belongs to

the class of GEL estimators. The GEL problem dual to the MD problem
is given by:

(X))

5 1

ver(0) = max Ng-— E{
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Asset pricing proxy and admissible SDF

@ The admissible SDF which is closest to the asset pricing proxy y is given
by:

mer(8) = y(8) — 1+ (YA.x)
where A, is the solution of the optimization problem (13).

@ These solutions give additive correction terms to the proxy y that are
nonlinear functions of the optimal linear combinations of primitive assets’
payoffs \\,px, which are the smallest corrections (in the ¢ divergence
sense) for y to become an admissible SDF

@ As a particular case, the HJ admissible SDF is given by a linear correction
fh/—/J(&) =y — A;_UX.
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Model Estimation Based on Minimum Discrepancy

@ Researchers have been using the HJ (1997) distance to estimate asset
pricing models by finding the parameter vector 8" that minimizes this
distance.

@ Following Kitamura (2006) and the whole literature on MD estimators,
we propose estimating the above asset pricing models by finding the
parameter vector Oyp that minimizes any specific discrepancy function:

Omp = argmin dmp(0),
o Rk

@ When the discrepancy belongs to the Cressie Read family:

y+1
. P (YA'x)™ , 1
Ocr = a ax ANg—E{-—-"—— 0) — 1)\ _
@x ggg;km /\g;}w)ﬂl q { Y+ 1 +(y(0) = 1)N'x + A
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Asymptotic Properties of the Estimators

@ In order to be able to perform hypothesis tests with the new proposed
discrepancy measures, we develop the statistical properties of our
estimators.

@ We analyze the asymptotic properties of our MD estimators considering
that the asset pricing models analyzed are misspecified.

@ Under the same set of assumptions provided by Kitamura and
Stutzer(1997) and Kitamura (2000), we prove consistency and asymptotic
normality of our estimators for the family of Cressie Read discrepancies.

@ We provide an application to the canonical CCAPM (estimation of the
risk aversion parameter).
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Conclusion

© We propose a methodology to elicit positive admissible SDFs
that price exactly a set of basis assets (risk factors).

@ We use these SDFs to construct information frontiers to
evaluate the admissibility of models that imply nonlinear
dynamics of fundamentals and distributions of returns with
skewness and kurtosis.

© We use these SDFs to measure performance of hedge funds.

@ We build measures of tail risk based on risk-neutralized returns
of portfolios.

© We provide estimators of the parameters of the asset pricing
models that minimize the distance to admissible SDFs (a
measure of misspecification).
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