Motivation

Á

Model

# Volatility Risk Pass-Through



### **Main Question**

Uncertainty in a one-country setting:

- Sizeable impact of volatility risks on growth and asset prices
- Typically, high aggregate volatility is "bad":
  - Lowers output and investment
  - Lowers asset valuations
  - Increases risk premia and marginal utility

### **Main Question**

Uncertainty in a one-country setting:

- Sizeable impact of volatility risks on growth and asset prices
- Typically, high aggregate volatility is "bad":
  - Lowers output and investment
  - Lowers asset valuations
  - Increases risk premia and marginal utility

Open question:

- How are volatility risks shared internationally?
  - Novel empirical investigation on G17
  - Novel theoretical insights on volatility risk-sharing



- 1. International pass-through of output vol shocks to consumption vol
  - Trade channel: higher vol  $\rightarrow$  lower net exports
  - Consumption vol more cross-country correlated than output vol



- 1. International pass-through of output vol shocks to consumption vol
  - Trade channel: higher vol  $\rightarrow$  lower net exports
  - Consumption vol more cross-country correlated than output vol
- 2. Volatility pass-through is significant and size-dependent
  - Quantification by a Pass-through index
  - Smaller countries feature a stronger pass-through



- 1. International pass-through of output vol shocks to consumption vol
  - Trade channel: higher vol  $\rightarrow$  lower net exports
  - Consumption vol more cross-country correlated than output vol
- 2. Volatility pass-through is significant and size-dependent
  - Quantification by a Pass-through index
  - Smaller countries feature a stronger pass-through
- 3. Volatility disconnect puzzle
  - $corr(\sigma_t(\Delta e_{t+1}), \sigma_t(\Delta c_{t+1} \Delta c_{t+1}^*)) = .30$
  - Beyond the Backus & Smith 93 puzzle



- 1. International pass-through of output vol shocks to consumption vol
  - Trade channel: higher vol  $\rightarrow$  lower net exports
  - Consumption vol more cross-country correlated than output vol
- 2. Volatility pass-through is significant and size-dependent
  - Quantification by a Pass-through index
  - Smaller countries feature a stronger pass-through
- 3. Volatility disconnect puzzle
  - $corr(\sigma_t(\Delta e_{t+1}), \sigma_t(\Delta c_{t+1} \Delta c_{t+1}^*)) = .30$
  - Beyond the Backus & Smith 93 puzzle
- 4. Explain these findings with a recursive risk sharing of output vol risks

Motivation

(Empirical Analysis)

Model

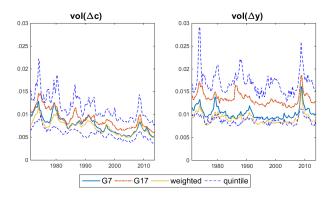
**Risk-Sharing** 

Conclus

Appendix

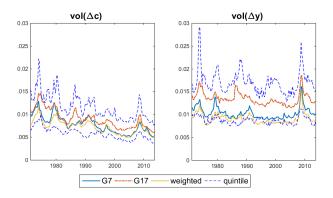
### **Empirical Analysis**

#### **Empirical Analysis**


- Quarterly data for 17 major industrialized countries from 1971 to 2014
- Output is consumption plus net exports
  - Abstract for now from investment and government expenditure
- For variable of interest in each country, run a filter:

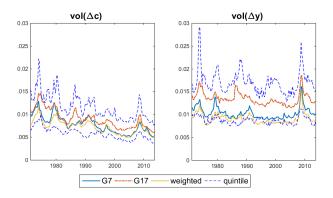
$$z_t = \mu(1-\rho) + \rho z_{t-1} + e^{\sigma_t(z)/2} \eta_t$$
  
$$\sigma_t(z) = \mu_\sigma(1-\nu) + \nu \sigma_{t-1}(z) + \sigma_w w_t$$

- z is real output, consumption, net exports, exchange rates


σ(z) is our estimate of the short-run volatility

#### **Macroeconomic Volatilities**




1. Substantial persistent movements in macro vols

#### **Macroeconomic Volatilities**



- 1. Substantial persistent movements in macro vols
- 2. Across countries:  $\rho(\sigma_t^y, \sigma_t^{y*}) = 0.30 < \rho(\sigma_t^c, \sigma_t^{c*}) = 0.50$

#### **Macroeconomic Volatilities**



- 1. Substantial persistent movements in macro vols
- 2. Across countries:  $\rho(\sigma_t^y, \sigma_t^{y*}) = 0.30 < \rho(\sigma_t^c, \sigma_t^{c*}) = 0.50$
- 3. Within countries:  $\rho(\sigma_t^c, \sigma_t^y) = 0.70 < 1 \rightarrow \text{international pass-through}$ .

### **Measuring Relative Impulse Impact**

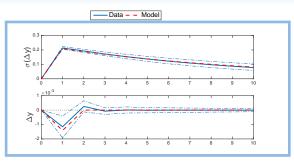
- Identify impact of relative output vols on quantities
- In benchmark case, stack country variables, relative to US:

$$ilde{Y}_{i,t} = egin{bmatrix} \sigma_t(\Delta y_i) - \sigma_t(\Delta y_{US}) \ \Delta y_i - \Delta y_{US} \ \sigma_t(\Delta c_i) - \sigma_t(\Delta c_{US}) \ \Delta c_i - \Delta c_{US} \ \Delta (NX/Y)_i - \Delta (NX/Y)_{US} \end{bmatrix},$$

- Estimate a pooled VAR(1) across countries
- Trace impulse response of relative output vol shocks on consumption, net exports, and consumption volatility

Motivation

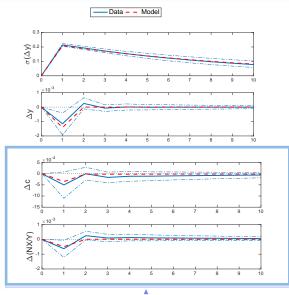
(Empirical Analysis)


Model

**Risk-Sharing** 

Conclusions

Appendix


#### **Response to Volatility Shocks**



#### Take-aways:

 High output volatility decreases the growth rate of output

#### **Response to Volatility Shocks**



Take-aways:

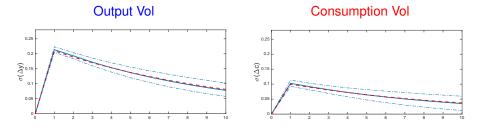
 High output volatility decreases the growth rate of output

• However, net imports increase, and consumption falls by less <u>Evidence of international</u> <u>risk-sharing</u>

7 / 20

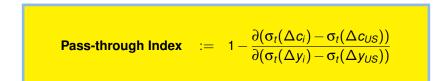
Motivation

(Empirical Analysis)


Model

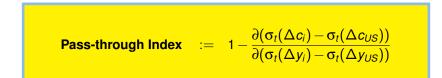
**Risk-Sharing** 

Conclusions


Appendix

#### **Volatility Pass-Through**




High Output Vol increases Consumption Vol less than one-to-one

### Volatility Pass-Through Index (VPTI) Details



- Interpretation of VPTI with one good and CRRA
  - 0  $\rightarrow$  no risk sharing, i.e., autarky ( $\Delta c_{i,t} = \Delta y_{i,t}$ )
  - 1 ightarrow perfect risk sharing (  $\Delta c_{i,t} = \Delta c_{j,t}$ )

## Volatility Pass-Through Index (VPTI)



#### Interpretation of VPTI with one good and CRRA

- 0  $\rightarrow$  no risk sharing, i.e., autarky ( $\Delta c_{i,t} = \Delta y_{i,t}$ )
- 1 ightarrow perfect risk sharing (  $\Delta c_{i,t} = \Delta c_{j,t}$ )
- In the data:
  - G7 countries, VPTI = 50%
  - Bottom-10 G17 countries, VPTI = 60%
  - Bottom-10 G17 countries, VPTI = 70% w.r.t. shocks originating in small countries

#### **Volatility Disconnect Puzzle**

• By no-arbitrage + CRRA, FX and consumption diff.s connected:

$$\Delta \boldsymbol{e}_{t+1} = \boldsymbol{\gamma} \times (\Delta \boldsymbol{c}_{h,t+1} - \Delta \boldsymbol{c}_{f,t+1})$$

## **Volatility Disconnect Puzzle**

• By no-arbitrage + CRRA, FX and consumption diff.s connected:

$$\Delta e_{t+1} = \gamma \times (\Delta c_{h,t+1} - \Delta c_{f,t+1})$$

Backus & Smith (1993): empirical disconnect of levels

$$Corr(\Delta e_{t+1}, \Delta c_{h,t+1} - \Delta c_{f,t+1}) \leq 0$$

## **Volatility Disconnect Puzzle**

• By no-arbitrage + CRRA, FX and consumption diff.s connected:

$$\Delta e_{t+1} = \gamma \times (\Delta c_{h,t+1} - \Delta c_{f,t+1})$$

• Backus & Smith (1993): empirical disconnect of levels

$$Corr(\Delta e_{t+1}, \Delta c_{h,t+1} - \Delta c_{f,t+1}) \leq 0$$

• This paper: empirical disconnect of vols

$$Corr(Var_t[\Delta e_{t+1}], Var_t[\Delta c_{h,t+1} - \Delta c_{f,t+1}]) \approx 0.20$$

- Puzzle with CRRA
- Puzzle for EZ models that address the Backus-Smith puzzle (among others, Colacito Croce (2011,2013))



**Risk-Sharing** 

Conclusions

Appendix





## Model

- Two countries: home (h) and foreign (f)
- Recursive **EZ** utility over the consumption aggregate C<sub>t</sub>

$$C_t^h = (x_t^h)^{\alpha} (y_t^h)^{1-\alpha}, \quad C_t^f = (x_t^f)^{1-\alpha} (y_t^f)^{\alpha}$$

- $x^h$ ,  $x^f$ ,  $y^h$ , and  $y^f$  are allocations of each good to each country
- $\alpha > 1/2$  captures home bias

(Model)

## Model

- Two countries: home (*h*) and foreign (*f*)
- Recursive **EZ** utility over the consumption aggregate C<sub>t</sub>

$$C_t^h = (x_t^h)^{\alpha} (y_t^h)^{1-\alpha}, \quad C_t^f = (x_t^f)^{1-\alpha} (y_t^f)^{\alpha}$$

- $x^h$ ,  $x^f$ ,  $y^h$ , and  $y^f$  are allocations of each good to each country
- $\alpha > 1/2$  captures home bias
- Endowments are co-integrated, and feature long-run and volatility risks:

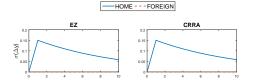
$$\Delta \log X_{t} = \mu_{x} + z_{1,t-1} - \tau \log (X_{t-1}/Y_{t-1}) + e^{\sigma_{x,t}/2} \sigma \varepsilon_{x,t}$$
  
$$\Delta \log Y_{t} = \mu_{y} + z_{2,t-1} + \tau \log (X_{t-1}/Y_{t-1}) + e^{\sigma_{y,t}/2} \sigma \varepsilon_{y,t}$$
  
$$z_{j,t} = \rho z_{j,t-1} + \sigma_{z} \varepsilon_{j,t}, \forall j \in \{1,2\}$$

- Focus on short-run volatilities of endowments, as in the data.
  - Can extend to accommodate long-run volatility risks

## **Equilibrium Allocations and Relative Size**

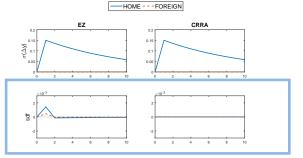
- Under complete markets, compute efficient allocations by solving Pareto problem with time-varying weights
- Optimal allocations depend on ratio of Pareto weights (country size) S<sub>t</sub> :

$$S_t = S_{t-1} \cdot \frac{M_t^h}{M_t^t} \cdot \left(\frac{C_t^h/C_{t-1}^h}{C_t^f/C_{t-1}^f}\right), \quad \forall t \ge 1$$


- Evolution of S<sub>t</sub> depends on pricing kernels M<sup>h</sup> and M<sup>f</sup>
- Under recursive preferences, volatility news are priced, and affect consumption allocations Details



## **Model Calibration**


- Calibration for level shocks: similar to Colacito Croce (JPE 2011, JF 2013)
  - Risk aversion is 7
  - Intertemporal elasticity of substitution is 1.5
- Calibration for vol shocks: median estimates in our data
  - Output volatility shocks are persistent
  - Negatively correlated with endowment shocks (-0.12, as in the data)
  - Weakly correlated across countries (0.30)
- Same 'successes' of Colacito Croce (2013) + explains VPTI and vol disconnect

#### **Risk Sharing**



 Home country receives vol shock


### **Risk Sharing**



 Home country receives vol shock

- Under EZ utility, vol shock is bad news
  - Home SDF ↑↑

#### **Risk Sharing**



 Home country receives vol shock

- Under EZ utility, vol shock is bad news
  - Home SDF ↑↑
- Under EZ utility, high vol country receives resources from abroad
  - Home Consumption ↑
  - $\bullet \hspace{0.1 cm} \text{Home NX} \downarrow \\$

|                                                              | Avg. | Quintiles          | Bench-                | No TVV                  | CRRA           |
|--------------------------------------------------------------|------|--------------------|-----------------------|-------------------------|----------------|
|                                                              |      | $[1^{st}; 4^{th}]$ | $\operatorname{mark}$ | $(\sigma_{\sigma} = 0)$ | $(\gamma = 7)$ |
| $corr(\sigma_t(\Delta c_{t+1}), \sigma_t(\Delta y_{t+1}))$   | 0.65 | [0.26; 0.80]       | 0.88                  | _                       | 0.98           |
| $corr(\sigma_t(\Delta c_{t+1}), \sigma_t(\Delta c_{t+1}^*))$ | 0.45 | [0.35; 0.66]       | 0.35                  | -0.93                   | 0.50           |

|                                                              | Avg. | Quintiles          | Bench- | No TVV                  | CRRA           |
|--------------------------------------------------------------|------|--------------------|--------|-------------------------|----------------|
|                                                              |      | $[1^{st}; 4^{th}]$ | mark   | $(\sigma_{\sigma} = 0)$ | $(\gamma = 7)$ |
| $corr(\sigma_t(\Delta c_{t+1}), \sigma_t(\Delta y_{t+1}))$   | 0.65 | [0.26; 0.80]       | 0.88   | _                       | 0.98           |
| $corr(\sigma_t(\Delta c_{t+1}), \sigma_t(\Delta c_{t+1}^*))$ | 0.45 | [0.35; 0.66]       | 0.35   | -0.93                   | 0.50           |

- Within countries: high correlation of consumption vol and GDP vol
- Across countries: lower correlation of consumption vols

|                                                              | Avg. | Quintiles          | Bench- | No TVV                  | CRRA           |
|--------------------------------------------------------------|------|--------------------|--------|-------------------------|----------------|
|                                                              |      | $[1^{st}; 4^{th}]$ | mark   | $(\sigma_{\sigma} = 0)$ | $(\gamma = 7)$ |
| $corr(\sigma_t(\Delta c_{t+1}), \sigma_t(\Delta y_{t+1}))$   | 0.65 | [0.26; 0.80]       | 0.88   | _                       | 0.98           |
| $corr(\sigma_t(\Delta c_{t+1}), \sigma_t(\Delta c_{t+1}^*))$ | 0.45 | [0.35; 0.66]       | 0.35   | -0.93                   | 0.50           |

- Within countries: high correlation of consumption vol and GDP vol
- Across countries: lower correlation of consumption vols
- CRRA overshoots with both correlations

|                                                              | Avg. | Quintiles          | Bench- | No TVV                  | CRRA           |
|--------------------------------------------------------------|------|--------------------|--------|-------------------------|----------------|
|                                                              |      | $[1^{st}; 4^{th}]$ | mark   | $(\sigma_{\sigma} = 0)$ | $(\gamma = 7)$ |
| $corr(\sigma_t(\Delta c_{t+1}), \sigma_t(\Delta y_{t+1}))$   | 0.65 | [0.26; 0.80]       | 0.88   | _                       | 0.98           |
| $corr(\sigma_t(\Delta c_{t+1}), \sigma_t(\Delta c_{t+1}^*))$ | 0.45 | [0.35; 0.66]       | 0.35   | -0.93                   | 0.50           |

- Within countries: high correlation of consumption vol and GDP vol
- Across countries: lower correlation of consumption vols
- CRRA overshoots with both correlations
- Time-varying vol (TVV) brings model with EZ preferences closer to the data

### **Pass-through and size**

|                  | SWC             | US vol shock    | Foreign vol shock |
|------------------|-----------------|-----------------|-------------------|
| US/G7 Countries: |                 | -               |                   |
| Data             | $[0.44 \ 0.51]$ | $[0.43 \ 0.54]$ | $[0.51 \ 0.63]$   |
| Model (EZ)       | 0.50            | 0.53            | 0.53              |
| Model (CRRA)     | 0.50            | 0.30            | 0.30              |

#### **Pass-through and size**

|                  | SWC             | US vol shock    | Foreign vol shock |
|------------------|-----------------|-----------------|-------------------|
| US/G7 Countries: |                 | -               |                   |
| Data             | $[0.44 \ 0.51]$ | $[0.43 \ 0.54]$ | $[0.51 \ 0.63]$   |
| Model (EZ)       | 0.50            | 0.53            | 0.53              |
| Model (CRRA)     | 0.50            | 0.30            | 0.30              |

US vs G7 countries

#### **Pass-through and size**

|                  | SWC          | US vol shock    | Foreign vol shock |
|------------------|--------------|-----------------|-------------------|
| US/G7 Countries: |              |                 |                   |
| Data             | [0.44  0.51] | $[0.43 \ 0.54]$ | $[0.51 \ 0.63]$   |
| Model (EZ)       | 0.50         | 0.53            | 0.53              |
| Model (CRRA)     | 0.50         | 0.30            | 0.30              |

US vs G7 countries

• similar Shares of World Consumption (SWC)

|                  | SWC             | US vol shock    | Foreign vol shock |
|------------------|-----------------|-----------------|-------------------|
| US/G7 Countries: |                 |                 |                   |
| Data             | $[0.44 \ 0.51]$ | $[0.43 \ 0.54]$ | $[0.51 \ 0.63]$   |
| Model (EZ)       | 0.50            | 0.53            | 0.53              |
| Model (CRRA)     | 0.50            | 0.30            | 0.30              |

#### US vs G7 countries

- similar Shares of World Consumption (SWC)
- benchmark model matches the empirical amount of Vol pass-through

|                            | SWC             | US vol shock    | Foreign vol shock |
|----------------------------|-----------------|-----------------|-------------------|
| US/G7 Countries:           |                 |                 |                   |
| Data                       | $[0.44 \ 0.51]$ | $[0.43 \ 0.54]$ | $[0.51 \ 0.63]$   |
| Model (EZ)                 | 0.50            | 0.53            | 0.53              |
| Model (CRRA)               | 0.50            | 0.30            | 0.30              |
| US/Bottom-10 G17 Countries |                 |                 |                   |
| Data                       | $[0.72 \ 0.77]$ | $[0.45 \ 0.57]$ | $[0.66 \ 0.78]$   |
| Model (EZ)                 | 0.72            | 0.39            | 0.70              |
| Model (CRRA)               | 0.72            | 0.38            | 0.37              |

### US vs G7 countries

- similar Shares of World Consumption (SWC)
- benchmark model matches the empirical amount of Vol pass-through
- O US vs bottom G17 countries

|                            | SWC             | US vol shock    | Foreign vol shock |
|----------------------------|-----------------|-----------------|-------------------|
| US/G7 Countries:           |                 |                 |                   |
| Data                       | $[0.44 \ 0.51]$ | $[0.43 \ 0.54]$ | $[0.51 \ 0.63]$   |
| Model (EZ)                 | 0.50            | 0.53            | 0.53              |
| Model (CRRA)               | 0.50            | 0.30            | 0.30              |
| US/Bottom-10 G17 Countries |                 |                 |                   |
| Data                       | $[0.72 \ 0.77]$ | $[0.45 \ 0.57]$ | [0.66  0.78]      |
| Model (EZ)                 | 0.72            | 0.39            | 0.70              |
| Model (CRRA)               | 0.72            | 0.38            | 0.37              |

### US vs G7 countries

- similar Shares of World Consumption (SWC)
- benchmark model matches the empirical amount of Vol pass-through
- O US vs bottom G17 countries
  - US has a much larger SWC

|                            | SWC             | US vol shock    | Foreign vol shock |
|----------------------------|-----------------|-----------------|-------------------|
| US/G7 Countries:           |                 |                 |                   |
| Data                       | $[0.44 \ 0.51]$ | $[0.43 \ 0.54]$ | $[0.51 \ 0.63]$   |
| Model (EZ)                 | 0.50            | 0.53            | 0.53              |
| Model (CRRA)               | 0.50            | 0.30            | 0.30              |
| US/Bottom-10 G17 Countries |                 |                 |                   |
| Data                       | $[0.72 \ 0.77]$ | $[0.45 \ 0.57]$ | $[0.66 \ 0.78]$   |
| Model (EZ)                 | 0.72            | 0.39            | 0.70              |
| Model (CRRA)               | 0.72            | 0.38            | 0.37              |

### US vs G7 countries

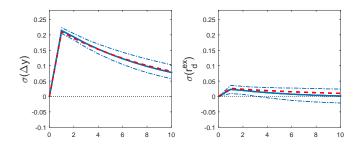
- similar Shares of World Consumption (SWC)
- benchmark model matches the empirical amount of Vol pass-through

### O US vs bottom G17 countries

- US has a much larger SWC
- US unloads less vol to smaller countries

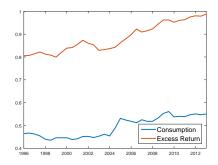
|                            | SWC             | US vol shock    | Foreign vol shock |
|----------------------------|-----------------|-----------------|-------------------|
| US/G7 Countries:           |                 |                 |                   |
| Data                       | $[0.44 \ 0.51]$ | $[0.43 \ 0.54]$ | $[0.51 \ 0.63]$   |
| Model (EZ)                 | 0.50            | 0.53            | 0.53              |
| Model (CRRA)               | 0.50            | 0.30            | 0.30              |
| US/Bottom-10 G17 Countries |                 |                 |                   |
| Data                       | $[0.72 \ 0.77]$ | $[0.45 \ 0.57]$ | $[0.66 \ 0.78]$   |
| Model (EZ)                 | 0.72            | 0.39            | 0.70              |
| Model (CRRA)               | 0.72            | 0.38            | 0.37              |

### US vs G7 countries


- similar Shares of World Consumption (SWC)
- benchmark model matches the empirical amount of Vol pass-through

### O US vs bottom G17 countries

- US has a much larger SWC
- US unloads less vol to smaller countries
- smaller countries unload a lot of vol risk to US


## **Return Vol Pass-through**

Pass-through Index := 
$$1 - \frac{\partial(\sigma_t(r_{d,i}^{ex}) - \sigma_t(r_{d,US}^{ex}))}{\partial(\sigma_t(\Delta y_i) - \sigma_t(\Delta y_{US}))}$$



• Excess return pass-through similar to the data (0.89)

## **Change in Pass-through**



|                              | Benchmark | CRRA |
|------------------------------|-----------|------|
| Consumption vol pass-through | 0.40      | 0.20 |
| Financial pass-through       | 0.57      | 0.00 |

$$\Delta e_{t+1} \quad \left(\Delta c_{t+1}^{f} - \Delta c_{t+1}^{h}\right)$$

- 19 / 20

$$\Delta e_{t+1} = \left(\Delta c_{t+1}^{f} - \Delta c_{t+1}^{h}\right)$$

- 19 / 20

ΕZ

# FX and Consumption Disconnect in the Model

$$\Delta e_{t+1} = \left(\Delta c_{t+1}^{f} - \Delta c_{t+1}^{h}
ight) - \Delta S_{t+1}$$

- 19 / 20

| EZ                                                          | $\Delta e_{t+1} = (\Delta e_{t+1})$ | $\Delta c_{t+1}^{f} - \Delta c_{t+1}^{h}$ | $(1) - \Delta S_t$ | +1                      |                |
|-------------------------------------------------------------|-------------------------------------|-------------------------------------------|--------------------|-------------------------|----------------|
|                                                             | G                                   | -17 Data                                  |                    | Model                   |                |
|                                                             | Avg.                                | Quintiles                                 | Bench-             | No TVV                  | CRRA           |
|                                                             |                                     | $[1^{st}; 4^{th}]$                        | mark               | $(\sigma_{\sigma} = 0)$ | $(\gamma = 7)$ |
| Levels Disconnect                                           |                                     |                                           |                    |                         |                |
| $corr(\Delta cd_{t+1}, \Delta e_{t+1})$                     | -0.13                               | [-0.19; -0.04]                            | -0.25              | -0.27                   | 1.00           |
| $corr(\Delta \widehat{cd}_{t+4}, \Delta \widehat{e}_{t+4})$ | -0.14                               | [-0.29; -0.05]                            | -0.21              | -0.24                   | 1.00           |

- good long-run risks and volatility shocks decrease relative consumption and size of country
- Produces weak negative correlation between the levels of FX and consumption differential, as in the data

| $ EZ \qquad \Delta e_{t+1} = \left( \Delta c_{t+1}^{f} - \Delta c_{t+1}^{h} \right) - \Delta S_{t+1} $                         |       |                    |        |                         |                |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|--------|-------------------------|----------------|--|--|
|                                                                                                                                | C     | -17 Data           |        | Model                   |                |  |  |
|                                                                                                                                | Avg.  | Quintiles          | Bench- | No TVV                  | CRRA           |  |  |
|                                                                                                                                |       | $[1^{st}; 4^{th}]$ |        | $(\sigma_{\sigma} = 0)$ | $(\gamma = 7)$ |  |  |
| Levels Disconnect                                                                                                              |       |                    |        |                         |                |  |  |
| $corr(\Delta cd_{t+1}, \Delta e_{t+1})$                                                                                        | -0.13 | [-0.19; -0.04]     | -0.25  | -0.27                   | 1.00           |  |  |
| $corr(\Delta \hat{cd}_{t+4}, \Delta \hat{e}_{t+4})$                                                                            | -0.14 | [-0.29; -0.05]     | -0.21  | -0.24                   | 1.00           |  |  |
| Volatility Disconnect                                                                                                          |       |                    |        |                         |                |  |  |
| $corr(\sigma_t(\Delta cd_{t+1}), \sigma_t(\Delta e_{t+1}))$                                                                    | 0.20  | $[-0.01 \ 0.42]$   | 0.56   | -0.75                   | 1.00           |  |  |
| $\underbrace{corr(\sigma_t(\Delta \widehat{cd}_{t+4}),  \sigma_t(\Delta \widehat{e}_{t+4}))}_{corr(\Delta \widehat{e}_{t+4}))$ | 0.26  | $[-0.02 \ 0.52]$   | 0.47   | -0.75                   | 1.00           |  |  |

- CRRA and model with no TVV cannot match this moment
- Volatilities of consumption differential and consumption share:
  - Move in the same direction in response to volatility shocks
  - Move in the opposite direction in response to long-run shocks

H 19 / 20



- 1. Domestic volatility risks are "passed through" internationally
- 2. Volatility pass-through is significant
  - Smaller countries better share volatility risks
- 3. FX-Vol Disconnect Puzzle
- 4. Resolve these puzzles with recursive risk sharing of vol shocks



| Table 1: Data Summary Statistics        |         |        |          |          |          |  |
|-----------------------------------------|---------|--------|----------|----------|----------|--|
|                                         | G7 Avg. | G17    | 7 Avg.   | G17 Q    | uintile  |  |
|                                         | Simple  | Simple | Weighted | $1^{st}$ | $4^{th}$ |  |
| Consumption growth                      |         |        |          |          |          |  |
| Mean                                    | 1.91    | 1.63   | 1.89     | 1.26     | 2.02     |  |
| Std. Dev.                               | 1.75    | 1.99   | 1.67     | 1.34     | 2.47     |  |
| AR(1)                                   | 0.11    | 0.07   | 0.17     | -0.16    | 0.31     |  |
| Output growth                           |         |        |          |          |          |  |
| Mean                                    | 1.94    | 1.71   | 1.93     | 1.43     | 2.00     |  |
| Std. Dev.                               | 2.21    | 2.97   | 2.02     | 2.01     | 4.43     |  |
| AR(1)                                   | 0.00    | -0.09  | 0.07     | -0.26    | 0.09     |  |
| $\Delta Net \ Exports \ over \ Output:$ |         |        |          |          |          |  |
| Mean                                    | 0.03    | 0.08   | 0.04     | -0.30    | 0.34     |  |
| Std. Dev.                               | 1.60    | 2.48   | 1.45     | 1.79     | 3.24     |  |
| AR(1)                                   | 0.00    | -0.09  | 0.07     | -0.26    | 0.09     |  |
| Within-Country Correlations:            |         |        |          |          |          |  |
| Consump. and output growth              | 0.67    | 0.51   | 0.71     | 0.35     | 0.72     |  |
| Consump. and output vol                 | 0.54    | 0.47   | 0.65     | 0.26     | 0.80     |  |
| Across-Country Correlations:            |         |        |          |          |          |  |
| Consump. growth                         | 0.27    | 0.24   | 0.25     | 0.13     | 0.33     |  |
| Output growth                           | 0.15    | 0.14   | 0.14     | 0.06     | 0.20     |  |
| Consump. vol                            | 0.51    | 0.47   | 0.45     | 0.35     | 0.66     |  |
| Output vol                              | 0.32    | 0.30   | 0.30     | 0.18     | 0.45     |  |



|                             | Table 2: Volatility Risk Fass-Tillough |                    |                  |                   |                 |  |  |  |
|-----------------------------|----------------------------------------|--------------------|------------------|-------------------|-----------------|--|--|--|
| Panel A: 0                  | Contemporane                           | ous adjustme       | ents to relative | e volatility sho  | cks             |  |  |  |
| $\sigma(\Delta y)$          | $\Delta y$                             | $\sigma(\Delta c)$ | $\Delta c$       | $\Delta(NX/Y)$    | Pass-           |  |  |  |
|                             |                                        |                    |                  |                   | through         |  |  |  |
| US/G7 Cou                   | intries:                               |                    |                  |                   |                 |  |  |  |
| 0.21                        | -0.46                                  | 0.10               | -0.20            | -0.25             | 0.52            |  |  |  |
| $[0.20 \ 0.22]$             | $[0.09 \ 0.11]$                        | [-0.44  0.03]      | [-0.44  0.03]    | $[-0.49 \ -0.02]$ | $[0.48 \ 0.56]$ |  |  |  |
| US/Bottom-10 G17 Countries: |                                        |                    |                  |                   |                 |  |  |  |
| 0.21                        | -0.57                                  | 0.08               | -0.16            | -0.39             | 0.61            |  |  |  |
| [0.21; 0.22]                | [-0.95; -0.19]                         | [0.07; 0.09]       | [-0.41; 0.09]    | [-0.73; -0.06]    | [0.56; 0.65]    |  |  |  |
| Panel B: I                  | Pass-through a                         | nd size            |                  |                   |                 |  |  |  |
|                             |                                        |                    | Oi               | rigin of Vol Shoc | k:              |  |  |  |
|                             |                                        |                    | U.S.             | eign Country      |                 |  |  |  |
| US/G7 Coun                  | atries:                                |                    | 0.49             | 0.57              |                 |  |  |  |
|                             |                                        |                    | [0.43; 0.54]     |                   | [0.51; 0.63]    |  |  |  |
| US/Bottom-1                 | 10 G17 Countrie                        | s:                 | 0.51             | 0.72              |                 |  |  |  |
|                             |                                        |                    | [0.45; 0.57]     |                   | [0.66; 0.78]    |  |  |  |

Table 2: Volatility Risk Pass-Through

| Motivation | Empirical Analysis | Model | Risk-Sharing | Conclusions | Appendix |
|------------|--------------------|-------|--------------|-------------|----------|
|            |                    |       |              |             |          |
|            |                    |       |              |             |          |
|            |                    |       |              |             |          |

 Table 3:
 Volatility Disconnect Puzzle

|                                                                                 | G7 Avg. | G1'    | G17 Avg. |          | Quintile |
|---------------------------------------------------------------------------------|---------|--------|----------|----------|----------|
|                                                                                 | Simple  | Simple | Weighted | $1^{st}$ | $4^{th}$ |
| Levels Disconnect                                                               |         |        |          |          |          |
| $corr(\Delta cd_{t+1}, \Delta e_{t+1})$                                         | -0.14   | -0.11  | -0.13    | -0.19    | -0.04    |
| $corr(\Delta \widehat{cd}_{t+4}, \Delta \widehat{e}_{t+4})$                     | -0.14   | -0.17  | -0.14    | -0.29    | -0.05    |
| Volatility Disconnect                                                           |         |        |          |          |          |
| $corr(\sigma_t(\Delta cd_{t+1}), \sigma_t(\Delta e_{t+1}))$                     | 0.20    | 0.21   | 0.20     | -0.01    | 0.42     |
| $corr(\sigma_t(\Delta \widehat{cd}_{t+4}), \sigma_t(\Delta \widehat{e}_{t+4}))$ | 0.27    | 0.25   | 0.26     | -0.02    | 0.52     |

Motivation



| Table 4: Calibration                      |                          |                |  |  |
|-------------------------------------------|--------------------------|----------------|--|--|
| Description                               | Parameter                | Value          |  |  |
| Panel A: Standard Parameters              |                          |                |  |  |
| Relative Risk Aversion                    | $\gamma$                 | 7              |  |  |
| Intertemporal Elasticity of Substitution  | $\psi$                   | 1.50           |  |  |
| Subjective Discount Factor                | $\delta^4$               | 0.98           |  |  |
| Degree of Home Bias                       | $\alpha$                 | 0.96           |  |  |
| Mean of Endowment Growth                  | $\mu \cdot 4$            | 2.00%          |  |  |
| Short-Run Risk Volatility                 | $\sigma \cdot \sqrt{4}$  | 1.87%          |  |  |
| Long-Run Risk Autocorrelation             | $\rho^4$                 | 0.953          |  |  |
| Relative Long-Run Risk Volatility         | $\sigma_z/\sigma$        | 6.90%          |  |  |
| Cross-Correlation of Short-Run Shocks     | $\rho_X$                 | 00.15          |  |  |
| Cross-Correlation of Long-Run Shocks      | $\rho_z$                 | 00.92          |  |  |
| Panel B: Time-Varying Short-Run Risk      |                          |                |  |  |
| Persistence of Short-Run Volatility       | $\rho_{\sigma}$          | 0.90           |  |  |
|                                           |                          | [0.89 - 0.93]  |  |  |
| Volatility of Short-Run Volatility        | $\sigma_{sr}$            | 0.15           |  |  |
|                                           |                          | [0.15 - 0.16]  |  |  |
| Cross-Correlation of Short-Run Volatility | $\rho_{\sigma,\sigma^*}$ | 0.30           |  |  |
|                                           |                          | [0.13 - 0.45]  |  |  |
| Short-Run Volatility Correlation with     | $\rho_{\sigma,\Delta y}$ | -0.12          |  |  |
| Short-Run Shocks                          | -                        | [-0.15 - 0.05] |  |  |



| Table A1: Robustness of Pass-Through Results                       |                      |                    |                |                |              |  |
|--------------------------------------------------------------------|----------------------|--------------------|----------------|----------------|--------------|--|
| Panel A: Contemporaneous adjustments to relative volatility shocks |                      |                    |                |                |              |  |
| $\sigma(\Delta y)$                                                 | $\Delta y$           | $\sigma(\Delta c)$ | $\Delta c$     | $\Delta(NX/Y)$ | Pass-        |  |
|                                                                    |                      |                    |                |                | through      |  |
| Global Ben                                                         | chmark, G17 Co       | untries:           |                |                |              |  |
| 0.16                                                               | -0.44                | 0.06               | -0.06          | -0.37          | 0.61         |  |
| [0.15; 0.16]                                                       | [-0.67; -0.21]       | [0.06; 0.07]       | [-0.20; 0.09]  | [-0.56; -0.18] | [0.57; 0.64] |  |
| US/Pooled                                                          | G7:                  |                    |                |                |              |  |
| 0.19                                                               | -0.52                | 0.09               | -0.26          | -0.26          | 0.53         |  |
| [0.19;  0.20]                                                      | [-0.83; -0.23]       | [0.08; 0.10]       | [-0.50; -0.02] | [-0.49; -0.03] | [0.49; 0.56] |  |
| VAR(2) Me                                                          | odel:                |                    |                |                |              |  |
| 0.21                                                               | -0.41                | 0.09               | -0.11          | -0.29          | 0.59         |  |
| [0.20; 0.21]                                                       | [-0.71; -0.11]       | [0.08; 0.09]       | [-0.34; 0.13]  | [-0.53; -0.06] | [0.55; 0.62] |  |
| Panel B: I                                                         | Pass-through a       | ind size           |                |                |              |  |
|                                                                    | Origin of Vol Shock: |                    |                |                |              |  |
|                                                                    | US Foreign Country   |                    |                |                | eign Country |  |
| Global Bench                                                       | hmark/G17 Cou        | ntries:            | 0.52           |                | 0.62         |  |
|                                                                    |                      |                    | [0.45; 0.59]   |                | [0.58; 0.66] |  |
| US/Pooled C                                                        | 37:                  |                    | 0.47           |                | 0.64         |  |
|                                                                    |                      |                    | [0.43; 0.52]   |                | [0.58; 0.70] |  |
| VAR(2):                                                            |                      |                    | 0.55           |                | 0.63         |  |
|                                                                    |                      |                    | [0.50; 0.60]   |                | 0.58; 0.68]  |  |

| Table B1: Standard Unconditional Moments |           |                    |  |        |                       |                |
|------------------------------------------|-----------|--------------------|--|--------|-----------------------|----------------|
|                                          | G-17 Data |                    |  | Model  |                       |                |
|                                          | Avg.      | Quintiles          |  | Bench- | No TVV                | CRRA           |
|                                          |           | $[1^{st}; 4^{th}]$ |  | mark   | $(\sigma_{\sigma}=0)$ | $(\gamma = 7)$ |
| $corr(\Delta c, \Delta c^*)$             | 0.25      | [0.13; 0.33]       |  | 0.38   | 0.37                  | 0.74           |
| $\sigma(\Delta c)(\%)$                   | 1.67      | [1.34; 2.47]       |  | 1.85   | 1.82                  | 1.64           |
| $\sigma(\Delta c)/\sigma(\Delta y)$      | 0.88      | [0.57; 0.82]       |  | 0.93   | 0.94                  | 0.83           |
| $ACF1(\Delta c)$                         | 0.17      | [-0.16; 0.31]      |  | 0.06   | 0.07                  | 0.08           |
| $\sigma(M)/E(M)(\%)$                     | _         | _                  |  | 47.86  | 47.85                 | 11.49          |
| $\sigma(\Delta e)(\%)$                   | 10.50     | [10.2; 11.4]       |  | 12.80  | 12.65                 | 8.31           |
| $E(r^{f})(\%)$                           | 1.35      | [1.44; 2.41]       |  | 2.17   | 2.19                  | 14.91          |
| $\sigma(r^f)(\%)$                        | 1.79      | [1.61; 2.27]       |  | 0.33   | 0.33                  | 3.47           |
| $corr(r^f, r^{f*})$                      | 0.51      | [0.37; 0.56]       |  | 0.91   | 0.92                  | 0.98           |
| $\sigma(\Delta(NX/Y))/\sigma(\Delta y)$  | 0.70      | [0.67; 0.97]       |  | 0.32   | 0.32                  | 0.16           |

#### Table B1: Standard Unconditional Moments

Conclusion

(Appendix)

## Volatility Pass-Through Index • Back

Using the VAR on

$$ilde{Y}_{i,t} = egin{bmatrix} \sigma_t(\Delta y_i) - \sigma_t(\Delta y_{US}) \ \Delta y_i - \Delta y_{US} \ \sigma_t(\Delta c_i) - \sigma_t(\Delta c_{US}) \ \Delta c_i - \Delta c_{US} \ \Delta (NX/Y)_i - \Delta (NX/Y)_{US} \end{bmatrix},$$

the VPTI is

$$\textit{VPTI} \hspace{.1in} = \hspace{.1in} 1 - \frac{\tilde{\Sigma}_{3,1}}{\tilde{\Sigma}_{1,1}}$$

# Volatility Pass-Through Index (cont'd) • Back

Using the VAR on

$$\tilde{Y}_{i,t} = \left[\underbrace{\underbrace{\sigma_t(\Delta y_{US})}_{1}, \underbrace{\sigma_t(\Delta y_i)}_{2}, \underbrace{\Delta y_{US}}_{3}, \underbrace{\Delta y_i}_{4}, \underbrace{\sigma_t(\Delta c_{US})}_{5}, \underbrace{\sigma_t(\Delta c_i)}_{6}\right],$$

• VPTI from country i to US

$$VPTI = 1 - rac{ ilde{\Sigma}_{6,2} - ilde{\Sigma}_{5,2}}{\Sigma_{2,2}}$$

VPTI from US to country i

$$VPTI = 1 - rac{ ilde{\Sigma}_{5,2} - ilde{\Sigma}_{6,2}}{\Sigma_{1,1}}$$

# Volatility shocks are priced **Back**

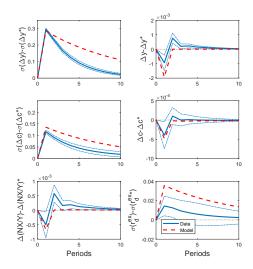
• Consider the case of  $\psi = 1$ , then

$$U_t = (1 - \delta) \log C_t + \delta \theta \log E_t \exp\left\{\frac{U_{t+1}}{\theta}\right\}, \quad \theta = 1/(1 - \gamma) < 0$$

• A second order Taylor expansion about  $E_t[U_{t+1}]$  yields

$$U_t \approx (1-\delta)\log C_t + \delta E_t[U_{t+1}] + \frac{\delta}{2\theta} Var_t[U_{t+1}]$$

The SDF is


$$m_t - E_{t-1}[m_t] = -(\Delta c_t - E_{t-1}[\Delta c_t]) + \frac{U_t}{\theta}$$

• If 
$$Var_t[U_{t+1}]$$
  $\uparrow$  then  $U_t \downarrow$  and  $m_t \uparrow$ 

Conclus

(Appendix)

### **IRF** with correlated level and vol





## Pass-through comparison

• With orthogonal shocks

|                 | US shock     | Foreign shock |
|-----------------|--------------|---------------|
| G7              | [0.43, 0.54] | [0.51,0.63]   |
| US vs bottom 10 | [0.45, 0.57] | [0.66, 0.78]  |

With correlated shocks

|                 | US shock     | Foreign shock |
|-----------------|--------------|---------------|
| G7              | [0.50, 0.60] | [0.51,0.64]   |
| US vs bottom 10 | [0.52, 0.63] | [0.78,0.89]   |