# Preferred Habitat and the <br> Term Structure of Interest Rates 

Dimitri Vayanos<br>LSE, CEPR and NBER

SBFin, Rio de Janeiro August 1, 2008

## 1. Introduction

- Term structure (TS) of interest rates.

- Driven by
- Short rates. (Current and future)
- Risk premia.


## Representative-Agent Model

- Prices determined by representative agent. (Lucas 1979)
- Prices must render aggregate consumption optimal.
- Implications for TS: (Cox-Ingersoll-Ross 1985)
- Interest rate for maturity $T$ depends on consumption at $t=0$ and $t=T$.
- Bond risk premia depend on covariance with consumption.


## Preferred-Habitat View

- TS involves clienteles with preferences for specific maturities.
- Pension funds, life-insurance: Long-term.
- Asset managers, banks' treasuries: Short-term.
- Local demand and supply matter.
- Culbertson (1957), Modigliani-Sutch (1966), Wall Street


## Supply Effects: Example

US Treasury buyback program, 2000-2002.

- Announced on January 13, 2000.
- 45 reverse auctions between March 2000 and April 2002.
- Targeted issues: Maturities between 10 and 27 years.
- Total: \$67.5b (on average $14 \%$ of each targeted issue).


## Impact on TS



## Summary and Implications

- Strong inversion of TS.
- Hard to rationalize within representative-agent model.
- Ricardian equivalence.
- Is buyback program informative about aggregate consumption in 30 years?
- Consistent with preferred-habitat view.


## Preferred Habitat: Criticisms

- No formal model.
- Bonds with nearby maturities are close substitutes
$\Rightarrow$ No-arbitrage should impose restrictions.


## Plan of the Talk

- Model of preferred habitat.
- Empirical testing.
- Implications for bond issuance.
- Government.
- Corporations.
- Preferred habitat in other markets.
- Government vs. corporate bonds.
- Options.


## 2. Model of Preferred Habitat

- Vayanos-Vila (2007).
- TS determined by
- Preferred-habitat demand. (Clienteles)
- Arbitrageurs.
- Arbitrageurs
- Integrate markets for different maturities.
- Are risk-averse.


## Main Results

- Bond risk premia are positively related to TS slope.
- Demand/supply vs. short-rate expectations:
- Effects of demand/supply are stronger for long maturities.
- Arbitrageurs anchor short maturities to short-rate expectations.


## Model

- Continuous time $t \in[0, \infty)$.
- Continuum of zero-coupon bonds.
- Maturities $\tau \in(0, T]$.
- Face value \$1.


## Prices and Rates

- Short rate is exogenous and follows OU process

$$
d r_{t}=\kappa_{r}\left(\bar{r}-r_{t}\right) d t+\sigma_{r} d B_{t}
$$

- Bond prices are endogenous.
- For maturity $\tau$ at time $t$,
- Price is $P_{t}^{(\tau)}$.
- Yield is defined by $y_{t}^{(\tau)} \equiv-\frac{\log P_{t}^{(\tau)}}{\tau}$.


## Agents

- Preferred-habitat demand.
- Specific to each maturity.
- Can depend only on corresponding spot rate.
- Investor clienteles, government.
- Arbitrageurs.
- Integrate markets for different maturities.


## Preferred-Habitat Demand

- Demand for maturity $\tau$ is linear and increasing in spot rate:

$$
\alpha(\tau) \tau y_{t}^{(\tau)}-\beta(\tau) \equiv-s_{t}^{(\tau)}
$$

where $\alpha(\tau)>0$.

- Absent arbitrageurs, spot rate for maturity $\tau$ is

$$
y_{t}^{(\tau)}=\frac{\beta(\tau)}{\alpha(\tau) \tau}
$$

## Arbitrageurs

- Can invest in all bonds.
- Preferences over instantaneous mean and variance

$$
E_{t}\left(d W_{t}\right)-\frac{a}{2} \operatorname{Var}_{t}\left(d W_{t}\right) .
$$

## Equilibrium



- Absent arbitrageurs, TS can have arbitrary shape ...


## Equilibrium



- ... and is disconnected from short-rate process.


## Equilibrium



- Arbitrageurs bring information about short rates into TS.


## Equilibrium



- Arbitrageurs bring information about short rates into TS.


## Equilibrium



- Arbitrageurs bring information about short rates into TS.


## Equilibrium



- Arbitrageurs smooth local demand and supply pressures.


## Bond Risk Premia

- Fama-Bliss (1987):
- Bond risk premia are strongly time-varying.
- Positively related to term-structure slope.
- Suppose that slope is negative.
- Expectations hypothesis: Short rates should decrease.
- FB: Short rates do not decrease enough $\Rightarrow$ Premia are negative.


## Bond Risk Premia (cont'd)

- Positive premia-slope relationship arises naturally in our model.
- Suppose that $r_{t}$ is high.
- Slope is negative.
- Arbitrageurs short bonds and invest at short rate.
- Premia are negative.


## Solving for Equilibrium

- Conjecture affine bond yields

$$
P_{t}^{(\tau)}=\exp \left[-\left[A_{r}(\tau) r_{t}+C(\tau)\right]\right] .
$$

- Bond returns are

$$
\frac{d P_{t}^{(\tau)}}{P_{t}^{(\tau)}}=\mu_{t}^{(\tau)} d t-A_{r}(\tau) \sigma_{r} d B_{t}
$$

where
$\mu_{t}^{(\tau)} \equiv A_{r}^{\prime}(\tau) r_{t}+C^{\prime}(\tau)-A_{r}(\tau) \kappa_{r}\left(\bar{r}-r_{t}\right)+\frac{1}{2} A_{r}(\tau)^{2} \sigma_{r}^{2}$.

## No-Arbitrage Pricing

- No-arbitrage implies

$$
\underbrace{\mu_{t}^{(\tau)}-r_{t}}_{\begin{array}{c}
\text { Bond's expected } \\
\text { excess return }
\end{array}}=\underbrace{A_{r}(\tau)}_{\begin{array}{c}
\text { Bond's loading } \\
\text { on short rate }
\end{array}} \times \underbrace{\lambda_{r}}_{\begin{array}{c}
\text { Market price } \\
\text { of short-rate risk }
\end{array}}
$$

- But what determines $\lambda_{r}$ ?


## Equilibrium Pricing

- No-arbitrage equation

$$
\mu_{t}^{(\tau)}-r_{t}=A_{r}(\tau) \lambda_{r}
$$

is also arbitrageurs' first-order condition.

- Implication:

$$
\lambda_{r}=a \sigma_{r}^{2} \times \quad \underbrace{\int_{0}^{T} x_{t}^{(\tau)} A_{r}(\tau) d \tau}
$$

Loading of arbitrageurs' portfolio on short rate

## Solving for $\lambda_{r}$

- Use market clearing.

$$
\begin{aligned}
\lambda_{r} & =a \sigma_{r}^{2} \int_{0}^{T} s_{t}^{(\tau)} A_{r}(\tau) d \tau \\
& =a \sigma_{r}^{2} \int_{0}^{T}\left[\beta(\tau)-\alpha(\tau) \tau y_{t}^{(\tau)}\right] A_{r}(\tau) d \tau
\end{aligned}
$$

- Since

$$
y_{t}^{(\tau)}=\frac{A_{r}(\tau) r_{t}+C(\tau)}{\tau}
$$

$\lambda_{r}$ is affine in $r_{t}$.

## Market Price of Short-Rate Risk $\lambda_{r}$

- Changes sign with $r_{t}$.
- Negative when $r_{t}$ is high.
- Positive when $r_{t}$ is low.
- Essentially affine model.
(Dai-Singleton 2002, Duffee 2002)
- Equilibrium model $\Rightarrow$ Can link $\lambda_{r}$ to economic primitives:
- Demand/supply.
- Arbitrageur risk aversion.


## Effects of Demand/Supply

- Demand/supply shocks: Changes in $\beta(\tau)$.
- Empirical counterparts:
- Changes in maturity structure of government debt.
- Changes in foreign ownership.
- Demographical changes.
- Regulatory reform (e.g., pensions).


## Changes in Maturity Structure

- Suppose that government
- Issues LT bonds ( $\beta(\tau)$ increases for large $\tau$ ).
- Buys back ST bonds ( $\beta(\tau)$ decreases for small $\tau$ ).
- Keeping total value of debt constant $\left(\int_{0}^{T} \beta(\tau) d \tau\right)$.


## Effects of Maturity Structure

- Suppose that TS is flat, and government
- Issues LT bonds.
- Buys back ST bonds.


## Effects of Maturity Structure



- Absent arbitrageurs, effects would be local.
- LT bonds become cheaper.
- ST bonds become more expensive.


## Effects of Maturity Structure



- In the presence of arbitrageurs,
- All bonds become cheaper.
- LT bonds especially so.
- Intuition: Market price of short-rate risk $\lambda_{r}$ increases.


## Arbitrageur Risk Aversion

- When arbitrageurs are more risk-averse (large $a$ ):
- Stronger relationship between premia and TS slope.
- Demand/supply have stronger effects on yields and risk premia.


## Arbitrageur Risk Aversion (cont'd)

- In our model, arbitrageur risk aversion is constant.
- If it increases following trading losses, it is high when
- TS slopes down and reverse-carry trade loses money.
- TS slopes up and carry trade loses money.


## Multiple Risk Factors

- So far:
- One-factor model. (Short rate $r_{t}$ )
- Demand/supply shocks are unanticipated and one-off.
- Can model explicitly time-variation in demand/supply.


## Two-Factor Model

- Demand shock $\beta_{t}$ affecting all maturities in same direction.
- Main driver of TS movement is
- Short-rate expectations $\left(r_{t}\right)$ for short end.
- Demand ( $\beta_{t}$ ) for long end.
- Even when shocks are independent with same variance, one principal component can explain $95 \%$ of return variation!


## 3. Empirical Testing

- Greenwood-Vayanos (2008).
- Variation in maturity structure of government debt.
- Positive correlation with yields?
- Positive correlation with expected returns?


## Dollar-Weighted Average Maturity: US 1952-2005



- Significant time variation.
- Dropped in late 60s and 70s.
- Increased in 80s and 90s.


## Supply and Bond Returns: Picture



Fraction of Government Debt 10 yrs+

## Supply and Bond Returns: Regressions

|  | $\mathrm{X}=D_{t}^{(10+)} / D_{t}$ |  |  |  |
| :--- | :---: | :---: | :---: | ---: |
|  | b | $(\mathrm{t})$ | $(\mathrm{t})$ | $\mathrm{R}^{2}$ |
| Dependent Variable: |  |  |  |  |
| 12-month return 2-year bond | 0.100 | $(2.599)$ | $(2.273)$ | 0.084 |
| 12-month return 3-year bond | 0.168 | $(2.566)$ | $(2.252)$ | 0.073 |
| 12-month return 4-year bond | 0.231 | $(2.676)$ | $(2.358)$ | 0.072 |
| 12-month return 5-year bond | 0.274 | $(2.685)$ | $(2.373)$ | 0.068 |
| 12-month return 20-year bond | 0.458 | $(2.838)$ | $(2.528)$ | 0.068 |
|  |  |  |  |  |
| 24-month return 20-year bond | 1.003 | $(3.508)$ | $(3.156)$ | 0.164 |
| 36-month return 20-year bond | 1.574 | $(3.939)$ | $(3.363)$ | 0.264 |
| 60-month return 20-year bond | 2.713 | $(5.260)$ | $(4.372)$ | 0.428 |

## 4. Bond Issuance

- Do issuers respond to demand pressures of clienteles?
- Relevant issuers:
- Government.
- Corporations.


## Clienteles and Government Issuance: Example

- 2005 UK pension reform.
- Pension funds must discount liabilities at market long rates.
- Switch from stocks to long-maturity bonds.
- UK real TS, January 2006:



## Issuance Response

- Tilt towards long maturities.
- Maturities of 15 years or longer constitute
- 58\% of issuance during financial year 2006-7.
- 40\% during four previous years.


## Optimal Maturity Structure of Government Debt

- Main departures from Ricardian equivalence:
- Representative agent, distortionary taxes.
- OLG two-period lives $\Rightarrow$ No clienteles.
- Guibaud-Nosbusch-Vayanos (2008):
- OLG three-period lives
- How does generation mix influence maturity structure?
- Preferred-habitat effects if CRRA>1.


## Optimal Maturity Structure of Corporate Debt

- Mix of LT and ST debt is irrelevant in Modigliani-Miller world.
- Greenwood-Hanson-Stein (2008):
- Corporations issue LT debt when govt. supply is small.
- Corporations time bond market.


## 5. Preferred Habitat in Other Markets

- Government vs. corporate bonds.
- Krishnamurthy-Vissing Jorgensen (2007).
- Options.
- Bollen-Whalley (2004).
- Garleanu-Pedersen-Poteshman (2007).


## 6. Conclusion

- TS determined by maturity clienteles and arbitrageurs.
- Local demand and supply for each maturity.
- Discipline of no-arbitrage.
- Novel implications for
- Bond risk premia.
- TS movements.
- Government and corporate issuance.

