Preferred Habitat and the Term Structure of Interest Rates

> Dimitri Vayanos LSE, CEPR and NBER

SBFin, Rio de Janeiro August 1, 2008

- Risk premia.

Representative-Agent Model

• Prices determined by representative agent. (Lucas 1979)

- Prices must render aggregate consumption optimal.

- Implications for TS: (Cox-Ingersoll-Ross 1985)
 - Interest rate for maturity T depends on consumption at
 - t = 0 and t = T.
 - Bond risk premia depend on covariance with consumption.

Preferred-Habitat View

- TS involves clienteles with preferences for specific maturities.
 - Pension funds, life-insurance: Long-term.
 - Asset managers, banks' treasuries: Short-term.
- Local demand and supply matter.
- Culbertson (1957), Modigliani-Sutch (1966), Wall Street

Supply Effects: Example

US Treasury buyback program, 2000-2002.

- Announced on January 13, 2000.
- 45 reverse auctions between March 2000 and April 2002.
- Targeted issues: Maturities between 10 and 27 years.
- Total: \$67.5b (on average 14% of each targeted issue).

Summary and Implications

- Strong inversion of TS.
- Hard to rationalize within representative-agent model.
 - Ricardian equivalence.
 - Is buyback program informative about aggregate consumption in 30 years?
- Consistent with preferred-habitat view.

Preferred Habitat: Criticisms

- No formal model.
- Bonds with nearby maturities are close substitutes
 - \Rightarrow No-arbitrage should impose restrictions.

Plan of the Talk

- Model of preferred habitat.
- Empirical testing.
- Implications for bond issuance.
 - Government.
 - Corporations.
- Preferred habitat in other markets.
 - Government vs. corporate bonds.
 - Options.

- Are risk-averse.

Main Results

- Bond risk premia are positively related to TS slope.
- Demand/supply vs. short-rate expectations:
 - Effects of demand/supply are stronger for long maturities.
 - Arbitrageurs anchor short maturities to short-rate expectations.

- Continuous time $t \in [0,\infty)$.
- Continuum of zero-coupon bonds.
 - Maturities $\tau \in (0, T]$.
 - Face value \$1.

Prices and Rates

• Short rate is exogenous and follows OU process

$$dr_t = \kappa_r (\overline{r} - r_t) dt + \sigma_r dB_t.$$

- Bond prices are endogenous.
- For maturity au at time t,
 - Price is $P_t^{(\tau)}$.

– Yield is defined by
$$y_t^{(au)}\equiv -rac{\log P_t^{(au)}}{ au}$$
.

- Preferred-habitat demand.
 - Specific to each maturity.
 - Can depend only on corresponding spot rate.
 - Investor clienteles, government.
- Arbitrageurs.
 - Integrate markets for different maturities.

Preferred-Habitat Demand

• Demand for maturity τ is linear and increasing in spot rate:

$$\alpha(\tau)\tau y_t^{(\tau)} - \beta(\tau) \equiv -s_t^{(\tau)},$$

where $\alpha(\tau) > 0$.

• Absent arbitrageurs, spot rate for maturity τ is

$$y_t^{(\tau)} = \frac{\beta(\tau)}{\alpha(\tau)\tau}.$$

Arbitrageurs

- Can invest in all bonds.
- Preferences over instantaneous mean and variance

$$E_t(dW_t) - \frac{a}{2}Var_t(dW_t).$$

Bond Risk Premia

- Fama-Bliss (1987):
 - Bond risk premia are strongly time-varying.
 - Positively related to term-structure slope.
- Suppose that slope is negative.
 - Expectations hypothesis: Short rates should decrease.
 - FB: Short rates do not decrease enough \Rightarrow Premia are negative.

Bond Risk Premia (cont'd)

- Positive premia-slope relationship arises naturally in our model.
- Suppose that r_t is high.
 - Slope is negative.
 - Arbitrageurs short bonds and invest at short rate.
 - Premia are negative.

• Conjecture affine bond yields

$$P_t^{(\tau)} = \exp\left[-\left[A_r(\tau)r_t + C(\tau)\right]\right].$$

• Bond returns are

$$\frac{dP_t^{(\tau)}}{P_t^{(\tau)}} = \mu_t^{(\tau)} dt - A_r(\tau)\sigma_r dB_t,$$

where

$$\mu_t^{(\tau)} \equiv A'_r(\tau)r_t + C'(\tau) - A_r(\tau)\kappa_r(\overline{r} - r_t) + \frac{1}{2}A_r(\tau)^2\sigma_r^2.$$

Equilibrium Pricing

• No-arbitrage equation

$$\mu_t^{(\tau)} - r_t = A_r(\tau)\lambda_r$$

is also arbitrageurs' first-order condition.

• Implication:

$$\lambda_r = a\sigma_r^2 \times \qquad \qquad \underbrace{\int_0^T x_t^{(\tau)} A_r(\tau) d\tau}_{0}.$$

Loading of arbitrageurs' portfolio on short rate

(Dai-Singleton 2002, Duffee 2002)

- Equilibrium model \Rightarrow Can link λ_r to economic primitives:
 - Demand/supply.
 - Arbitrageur risk aversion.

Effects of Demand/Supply

- Demand/supply shocks: Changes in $\beta(\tau)$.
- Empirical counterparts:
 - Changes in maturity structure of government debt.
 - Changes in foreign ownership.
 - Demographical changes.
 - Regulatory reform (e.g., pensions).

- Suppose that TS is flat, and government
 - Issues LT bonds.
 - Buys back ST bonds.

- Absent arbitrageurs, effects would be local.
 - LT bonds become cheaper.
 - ST bonds become more expensive.

- In the presence of arbitrageurs,
 - All bonds become cheaper.
 - LT bonds especially so.
- Intuition: Market price of short-rate risk λ_r increases.

Arbitrageur Risk Aversion

- When arbitrageurs are more risk-averse (large *a*):
 - Stronger relationship between premia and TS slope.
 - Demand/supply have stronger effects on yields and risk premia.

Multiple Risk Factors

- So far:
 - One-factor model. (Short rate r_t)
 - Demand/supply shocks are unanticipated and one-off.
- Can model explicitly time-variation in demand/supply.

Two-Factor Model

- Demand shock β_t affecting all maturities in same direction.
- Main driver of TS movement is
 - Short-rate expectations (r_t) for short end.
 - Demand (β_t) for long end.
- Even when shocks are independent with same variance, one principal component can explain 95% of return variation!

Dollar-Weighted Average Maturity: US 1952-2005

- Significant time variation.
 - Dropped in late 60s and 70s.
 - Increased in 80s and 90s.

Supply and Bond Returns: Regressions

	$X = D_t^{(10+)} / D_t$			
	b	(t)	(t)	R^2
Dependent Variable:				
12-month return 2-year bond	0.100	(2.599)	(2.273)	0.084
12-month return 3-year bond	0.168	(2.566)	(2.252)	0.073
12-month return 4-year bond	0.231	(2.676)	(2.358)	0.072
12-month return 5-year bond	0.274	(2.685)	(2.373)	0.068
12-month return 20-year bond	0.458	(2.838)	(2.528)	0.068
24-month return 20-year bond	1.003	(3.508)	(3.156)	0.164
36-month return 20-year bond	1.574	(3.939)	(3.363)	0.264
60-month return 20-year bond	2.713	(5.260)	(4.372)	0.428

Issuance Response

- Tilt towards long maturities.
- Maturities of 15 years or longer constitute
 - 58% of issuance during financial year 2006-7.
 - 40% during four previous years.

Page 39

- Bollen-Whalley (2004).
- Garleanu-Pedersen-Poteshman (2007).

