A Gap-Filling Theory of Corporate Debt Maturity Choice

Robin Greenwood
Samuel Hanson
Jeremy Stein
April 2008

Corporate Debt Maturity

 Why does the average maturity of corporate debt vary so much over time?

Theories of Debt Maturity

- Many theories speak to the cross-section.
- Match maturities of assets and liabilities.
 - Myers (1977), Hart and Moore (1995).
- Signaling
 - Flannery (1986), Diamond (1991).
- But these theories are less well-suited to making timeseries predictions.

"Market Conditions" Matter for Debt Maturity

- General level of interest rates, slope of yield curve.
 - Bosworth (1971), Taggart (1977), Marsh (1982).
- Why do market conditions matter? Managers say they want to borrow "cheap": Graham and Harvey (2001).
- Could reflect earnings-management considerations.
 - Stein (1989), Faulkender (2005), Chernenko and Faulkender (2007).
- Or efforts to exploit predictability of bond returns.
 - Baker, Greenwood and Wurgler (2003).

Questions for BGW (2003)

- What are root sources of bond-market predictability?
- Why do managers of nonfinancial firms have a comparative advantage in responding to mispricings?
 - Is it a forecasting/informational advantage?
- Butler et al (2006): "while it is provocative to think that managers may be better able to predict interest rate movements...most purchasers of corporate debt are sophisticated investors..."
- So what's the story?

A Gap-Filling Theory of Debt Maturity

- Firms have no informational or forecasting advantage.
- Rather, act as macro liquidity providers:
 - Bond market is segmented: Modigliani and Sutch (1966),
 Vayanos and Vila (2007), Greenwood and Vayanos (2008).
 - Some investors have preference for specific maturities.
 - Government shocks to supply of long- and short-term bonds.
 - Arbitrageurs with limited capital.
 - Firms must raise debt financing, but can deviate from target maturity mix.
- If world is close to M-M (costs of deviating from target are small), firms will fill gaps in supply created by gov't shocks.

Testable Implications

- Corporate debt maturity moves inversely with government debt maturity.
- When government share of total debt is large, movements in corporate maturity are bigger.
- Firms with more flexible balance sheets are more aggressive gap fillers.
- Government debt maturity is a latent variable that explains apparent corporate timing ability.

Preview of Results

- Construct proxies for maturity of corporate and government debt, 1963-2005.
- Strong negative correlation between government and corporate debt maturity – "gap filling".
- When government share of total debt is larger, firm debt maturity responds more elastically.
- Firms with more flexible balance sheets are biggest gap fillers.
- Including government debt maturity in forecasting regression reduces ability of corporate maturity to predict excess bond returns.

Model

- Three dates: 0, 1, 2.
- Short-term rates exogenous:
 - r_1 is known at time 0; r_2 , is random as of time 0 with mean $E[r_2]$ and variance $Var[r_2]$.
- Four types of actors:
 - Government: exogenous supply G.
 - Pension funds: exogenous long-term demand L.
 - Can keep track of net supply g= G-L
 - Risk averse arbitrageurs with zero wealth
 - Mean-variance optimizers; buy long-term bonds of value h, financed with short-term borrowing. (Note: h can be positive or negative.)
 - Firms
 - Need to borrow total dollar amount C

Equilibrium Without Firms

- Market clearing sets arb demand equal to net supply g.
 Solve for P*, price of long-term bond.
- This implies:

$$P^{*-1} - (1+r_1)(1+E[r_2]) = \frac{(1+r_1)^2 Var[r_2]}{\gamma}g$$

- Expectations hypothesis holds if:
 - g=0: no net supply shock.
 - $Var[r_2] = 0$: no interest rate risk.
 - γ is infinite: arbs are risk-neutral.

Reality Check: Are Gov't Supply Shocks Large Relative to Arbitrage Capital?

- 2005 stock of gov't debt = \$4.7 trillion.
- One standard-deviation annual shock to long-term gov't share = 9%, or \$423 billion.
- A fully offsetting arbitrage position that finances \$423 B of long-term bonds at the short-term rate has a (one percent) VaR of approx \$98 B.
- Compare to 2005 total assets of macro and fixedincome-arbitrage hedge funds: \$118 B and \$28 B.

Firms

- Borrow dollar amount C.
- Fraction f comes from long-term debt.
- Target maturity structure: fraction z of long-term debt.
- If stray from target, firms incur dollar costs $\theta C(f-z)^2/2$.
- Firms minimize total expected financing costs:

$$\min_{f} \left[C \left((1 - f)(1 + r_1)(1 + E(r_2)) + \frac{f}{P} + \theta \frac{(f - z)^2}{2} \right) \right]$$

Solution:

$$f^*(P) = z - \frac{P^{-1} - (1 + r_1)(1 + E[r_2])}{\theta}$$

Equilibrium

Market clearing for long-term bonds implies equilibrium prices:

$$P^{*-1} - (1+r_1)(1+E[r_2]) = \left[\frac{\theta(1+r_1)^2 Var[r_2]}{\gamma \theta + C(1+r_1)^2 Var[r_2]}\right](g+Cz)$$

and equilibrium fraction of long-term corporate debt:

$$f^* = z - \left[\frac{\left(1 + r_1\right)^2 Var\left[r_2\right]}{\gamma \theta + C\left(1 + r_1\right)^2 Var\left[r_2\right]} \right] (g + Cz)$$

Comparative Statics

- Proposition 1: $\partial f^* / \partial g < 0$
 - When gov't issues more long-term debt, firms tilt issuance toward short-term debt, and vice-versa.
- Proposition 2: $\partial^2 f^* / \partial g \partial C > 0$
 - Gap-filling behavior is more pronounced when the stock of government debt is large relative to the stock of corporate debt.

Comparative Statics

• Proposition 3: $\partial^2 f^* / \partial g \partial \theta > 0$

Firms with lower costs of straying from target maturity mix are more aggressive gap fillers.

Proposition 4: Bond-return predictability
 The ability of f* to forecast bond returns arises because f* responds to changes in the supply g of long-term government bonds, with g being the exogenous factor that drives variation in expected returns.

Data

- Corporate debt maturity: "long-term" is debt with maturity > 1 year. We have three measures.
 - Flow of Funds nonfinancial sector: compute both long-term level share and long-term issue share.
 - Issue share assumes that one tenth of long-term debt retires every period.
 - Compustat nonfinancial firms: compute only level share.
 (Compositional effects make measuring issues problematic.)
- Government debt maturity from CRSP bond database.
 - Compute both long-term level share (fraction of payments due in more than one year), and weighted average maturity.

Prediction 1: Gap Filling Figure 1, Panel A: FOF Levels

Figure 1, Panels B (FOF Issues) and C (Compustat Levels)

Table 2: Univariate Regressions of Corporate Maturity vs. Government Maturity

	FOF: Levels		FOF: Issu	FOF: Issues		Compustat: Levels	
D_L^G / D^G	-0.262		-0.249		-0.147		
	[-3.64]		[-4.21]		[-1.83]		
M		-1.804		-1.949		-1.272	
		[-2.64]		[-2.85]		[-1.67]	
R ²	0.22	0.11	0.29	0.18	0.15	0.12	

Table 3: Include Controls

		FOF: I	Levels	
	(1)	(2)	(3)	(4)
$D_{\scriptscriptstyle L}^{\scriptscriptstyle G}$ / $D^{\scriptscriptstyle G}$	-0.296	-0.387		
M	[-5.14]	[-5.45]		
			-2.540	-3.488
			[-4.31]	[-4.03]
\mathcal{Y}_{St}	-1.214	-1.263	-1.317	-1.404
	[-2.93]	[-3.55]	[-2.87]	[-3.43]
$y_{Lt} - y_{St}$	-0.613	-1.257	-0.781	-1.436
	[-1.11]	[-2.72]	[-1.30]	[-2.94]
Trend		0.160		0.154
		[2.26]		[1.78]
\mathbb{R}^2	0.63	0.73	0.55	0.64

Controls Strengthen the Results

- Interpretation: both firms and the government respond in the same way to some observable factors.
 - E.g., both shift to shorter-term debt when yield curve is steeply upwards-sloping.
 - Perhaps to reduce measured borrowing costs.
- This element of positive correlation obscures the negative relationship from our model. So controls help.
- What about unobservable factors and the endogeneity of government debt maturity?
 - Return to this momentarily.

Economic Magnitudes

- Average ratio of corporate to government debt during sample period is 1.09.
- Coefficient of -0.387 from FOF levels spec with full set of controls implies that firms fill 42% of the dollar gap created by variation in gov't debt maturity.
 - -42% = 0.387x1.09.
- FOF issues measure suggests similar magnitudes.

Table 4: Robustness

- Subperiods.
- Longer sample for FOF-based measures: 1953-2005.
- Control for business cycles.
- Longer-dated proxy for government debt.

What About Endogeneity of Government Maturity?

- Can instrument for gov't maturity with ratio of gov't debt to GDP.
 - Two variables are highly correlated: univariate R-squared= 0.74.
 - Debt/GDP a proxy for stance of fiscal policy, arguably exogenous with respect to unobserved market conditions that might influence firm maturity decisions.
- IV results are precisely estimated, almost identical to OLS results.

Differenced and GLS Specifications

- Concern that measures of debt maturity are persistent.
- Standard fixes: estimate in differences, or use GLS.
- But be mindful of over-differencing: with adjustment costs, corporate maturity may not respond immediately to changes in government maturity.
 - So regressions with annual changes should not reveal the full effect.

Table 5: Differenced Regressions

$$d_{L,t}^{C} / d_{t}^{C} = a + b \cdot \Delta_{k} \left(D_{L,t}^{G} / D_{t}^{G} \right) + u_{t}$$

$$\Delta_{k} \left(D_{L,t}^{C} / D_{t}^{C} \right) = a + b \cdot \Delta_{k} \left(D_{L,t}^{G} / D_{t}^{G} \right) + u_{t}$$

-	FOF Issues			Change	es in FOF Le	s in FOF Levels			
	b	[t]	\mathbb{R}^2	b	[t]	\mathbb{R}^2			
<i>k</i> =1 lag	-0.309	[-1.30]	0.04	-0.179	[-1.23]	0.06			
k=2 lags	-0.331	[-2.26]	0.12	-0.265	[-1.64]	0.13			
k=3 lags	-0.287	[-2.72]	0.16	-0.282	[-1.71]	0.16			
k=4 lags	-0.285	[-3.86]	0.25	-0.308	[-2.07]	0.21			
k=5 lags	-0.289	[-4.63]	0.33	-0.325	[-2.18]	0.24			

Table 5: Differenced Regressions

$$d_{L,t}^{C} / d_{t}^{C} = a + b \cdot \Delta_{k} \left(D_{L,t}^{G} / D_{t}^{G} \right) + u_{t}$$

$$\Delta_{k} \left(D_{L,t}^{C} / D_{t}^{C} \right) = a + b \cdot \Delta_{k} \left(D_{L,t}^{G} / D_{t}^{G} \right) + u_{t}$$

	FOF Issues			Change	es in FOF Levels		
	b	[t]	\mathbb{R}^2	b	[t]	\mathbb{R}^2	
<i>k</i> =1 lag	-0.309	[-1.30]	0.04	-0.179	[-1.23]	0.06	
k=2 lags	-0.331	[-2.26]	0.12	-0.265	[-1.64]	0.13	
k=3 lags	-0.287	[-2.72]	0.16	-0.282	[-1.71]	0.16	
k=4 lags	-0.285	[-3.86]	0.25	-0.308	[-2.07]	0.21	
k=5 lags	-0.289	[-4.63]	0.33	-0.325	[-2.18]	0.24	

Takes a few years for firms to respond...

Table 6: GLS Regressions

	F	OF: Levels		FOF: Issu		
$D_{\scriptscriptstyle L}^{\scriptscriptstyle G}$ / $D^{\scriptscriptstyle G}$	-0.187	-0.130	-0.130	-0.238	-0.276	-0.316
	[-1.44]	[-1.20]	[-1.21]	[-2.60]	[-4.70]	[-6.16]
\mathcal{Y}_{St}		-0.290	-0.300		-0.780	-0.826
		[-1.14]	[-1.15]		[-3.78]	[-4.60]
$y_{Lt} - y_{St}$		0.299	0.284		-0.100	-0.437
		[0.79]	[0.73]		[-0.21]	[-1.02]
Trend			0.101			0.066
			[0.65]			[1.95]
\mathbb{R}^2	0.62	0.66	0.73	0.25	0.53	0.59
ρ	0.96	0.97	0.96	0.43	0.16	0.05

Consistent with differenced specifications....

Interpretation of GLS Results

- With FOF issues, ρ is modest; GLS yields very strong results—similar to OLS.
- With FOF levels, ρ is almost one; GLS amounts to first differencing, and yields much weaker results.
- With Compustat levels, ρ is roughly 0.80; results are again similar to OLS.
- Overall conclusion: because FOF issues series is not very persistent, simple OLS approach with this measure is on firm ground.

Prediction 2: Time Variation in Gap Filling

- When we observe high values of (gov't debt)/GDP, or (gov't debt)/(total debt), firms should be more responsive in their gap filling.
- Empirical implementation:

$$d_{L,t}^{C} / d_{t}^{C} = a + b \cdot \left(D_{L,t}^{G} / D_{t}^{G}\right) + c \cdot Scale_{t} + d \cdot \left(Scale_{t} \times D_{L,t}^{G} / D_{t}^{G}\right)$$

$$+ e \cdot time + f \cdot \left(time \times D_{L,t}^{G} / D_{t}^{G}\right) + u_{tt}$$

Table 7

	Dependent Variable = Cor	porate Long-term issue share
	S = gov't debt to GDP	S = gov't debt to total debt
$D_{\scriptscriptstyle L}^{\scriptscriptstyle G}$ / $D^{\scriptscriptstyle G}$	0.640	1.188
	[2.79]	[2.44]
S	2.906	4.795
	[4.41]	[2.95]
$S \times \left(D_L^G / D^G\right)$	-4.400	-7.622
	[-4.49]	[-3.03]

...Firms more active at filling gap when Gov share is high

Prediction 3: The Cross-Section of Gap Filling

- Firms with stronger balance sheets should be more aggressive gap fillers—lower costs of deviating from target maturity mix.
- Empirical implementation: use Compustat data.
 - Proxies for balance sheet strength:
 - Market capitalization (bigger is stronger).
 - KZ index components
 - Dividend payers versus non payers (payers = stronger).
 - Cashflow/Assets (high = stronger).
 - Cash/Assets (high = stronger).
 - Tobin's Q (high = costlier to forego investment = weaker).
 - Leverage (high = weaker).

Figure 3: Gap Filling by Large and Small Firms

Table 8: Results Disaggregated by Firm Type

	Low		High		High – Low	
	b	[t]	b	[t]	b ^{High} - b ^{Low}	[t]
All Compustat Nonfinancial	-0.228	[-2.33]				
Market Capitalization	0.024	[0.43]	-0.286	[-2.50]	-0.310	[-2.18]
Non-payers ("low"); Payers ("high")	-0.043	[-0.83]	-0.263	[-2.30]	-0.220	[-1.91]
Cash Flow/Assets	0.073	[1.35]	-0.125	[-1.42]	-0.198	[-1.94]
Cash/Assets	-0.059	[-0.39]	-0.215	[-2.53]	-0.156	[-1.07]
Tobin's Q	-0.318	[-3.09]	-0.063	[-0.69]	0.255	[1.97]
Leverage	-0.375	[-3.19]	-0.367	[-2.88]	0.008	[0.06]

Prediction 4: Forecasting Bond-Market Returns

 Adding government maturity should reduce the predictive power of corporate debt maturity for future excess bond returns.

		3-year ahea	d excess retu	ırns (%)	
$D_{{\scriptscriptstyle L},{\scriptscriptstyle t}}^{\scriptscriptstyle G}$ / $D_{{\scriptscriptstyle t}}^{\scriptscriptstyle G}$	0.824		0.580		0.576
	[3.22]		[1.83]		[2.00]
$d_{L,t}^{C}/d_{t}^{C}$		-1.588 [-2.64]	-1.045 [-1.52]		
$D_{L,t}^{C}$ / D_{t}^{C}				-1.408	-1.034
				[-3.05]	[1.95]
R^2	0.19	0.17	0.25	0.20	0.28

Conclusions

- Firms are unlikely to have a forecasting/informational edge over, e.g., hedge funds. But can have an advantage in macro liquidity provision.
 - Follows from logic of M-M theorem: small costs of adjusting debt maturity to absorb large supply shocks.
 - Contrast with hedge funds who must worry about VaR and for whom betting the yield curve is an undiversifiable risk.
- Similar logic may explain other forms of macro timing.
 - Baker and Wurgler (2000) on the equity share and stockmarket returns.
 - Large volume of repurchases after 1987 market crash.

