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Motivation

Large literature on term structure modeling, focus on forecasting
more recent

Ang and Piazzesi (2003): a¢ ne model building on assumption of
no-arbitrage in bond markets, VAR with parameter restrictions

Previous out-of-sample evaluation approaches (Ang and Piazzesi,
2003, Du¤ee, 2002, Diebold and Li, 2006, Carriero, 2007)

Informal comparison of MSFE of no-arbitrage model,
unrestricted VAR and random walk

Our goal: propose a formal framework for investigating the
"usefulness" of no-arbitrage restrictions for forecasting
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Questions we want to answer

Are no-arbitrage restrictions only useful because they reduce
estimation error?

Are the results di¤erent when considering economic vs.
statistical measures of accuracy?

How important is the fact that no-arbitrage restrictions
incorporate a time-varying risk premium?

Has the usefulness of no-arbitrage restrictions changed over
time?
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Limitations of existing approaches

In-sample hypothesis testing not necessarily informative

Restrictions may not be true but still be useful for forecasting
(e.g., bias-variance tradeo¤)
Usefulness depends on the use to which one puts the model
(e.g., constructing bond portfolios)

Out-of-sample comparison tests (e.g., West, 1996, Clark and
McCracken, 2001 etc.) not obviously applicable

They compare performance of di¤erent models
We have one model and di¤erent restrictions on its parameters
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Contributions

Propose a measure of the usefulness of parameter restrictions for
forecasting and show how to perform inference

The measure is tailored to the forecaster�s decision problem

The measure can be time-varying
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Environment

One model (VAR for interest rates of di¤erent maturities)

Theoretical restrictions (Ang and Piazzesi�s no-arbitrage
restrictions)

Atheoretical restrictions (random walk)

Statistical and economic loss functions (quadratic and utility of
bond portfolio)
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The idea in a nutshell

Cast the problem in an out-of-sample forecast combination
framework

Combine unrestricted (and random walk) forecast with
no-arbitrage restricted forecast and estimate optimal weight for
a general loss function

Optimal weight = measure of the usefulness of no-arbitrage
restrictions

Time-varying weight = time-varying measure of usefulness
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Method. Rolling forecasts

For each yield, produce three sequences of n out-of-sample
forecasts using a rolling window scheme

unrestricted model =)
�
f Ut
	

model with no-arbitrage restrictions =)
�
f Rt
	

model with random walk restrictions =)
�
f RWt

	
Two forecast combinations

f ct = f Rt + (1� λ)
�
f Ut � f Rt

�
f ct = f Rt + (1� λ)

�
f RWt � f Rt

�
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Method. Global measure of usefulness

For general loss L (yt+1, ft) :

λ� = arg min
λ2R

E
h
L
�
yt+1, f Rt + (1� λ)(f Ut � f Rt )

�i

Estimate out-of-sample:

bλ = arg min
λ2R

1
n ∑

t
L
�
yt+1, f Rt + (1� λ)(f Ut � f Rt )

�
.

Large bλ = no-arbitrage restrictions are useful

Small bλ = no-arbitrage restrictions are not useful
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Method. Local measure of usefulness

Usefulness of economic restrictions may vary over time (similar
to Giacomini and Rossi, 2008 for testing problem)

Local measure () time-varying weights

λ�t = arg min
λt2R

E
h
L(yt+1, f Rt + (1� λt)

�
f Ut � f Rt

�i
Estimate a "smoothed" version of λ�t over rolling windows of
size d

bλt,d = arg min
λ2R

t

∑
j=t�d+1

h
L(yt+1, f Rt + (1� λ)

�
f Ut � f Rt

�i
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Method. Inference

Global measure =) test of H0 : λ = 0 (restrictions are useless)

Reject if

�����
p
nbλbσ
����� > 1.96. We give valid bσ

Local measure =) uniform con�dence bands valid under
H0 : λ�t constant 8t

I = (bλt,d � kα,π
bσp
d
, bλt,d + kα,π

bσp
d
)

We give kα,π (same as Giacomini and Rossi, 2008)

If 0 /2 I at some t =) reject that restrictions were useless 8t
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Statistical loss

For a quadratic loss L (yt+1, ft) = (yt+1 � ft)2 measure of
usefulness is

λ� =
E
��
yt+1 � f Ut

�
(f Rt � f Ut )

�
E
h�
f Rt � f Ut

�2i

Estimate by OLS

yt+1 � f Ut = λ(f Rt � f Ut ) + error

Local measure obtained by estimating rolling regressionsbσ for the test and con�dence bands is OLS standard error (HAC)
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Illustrative example

Suppose yt = β0xt + εt , xt � iid(0, σ2x Ik ), εt � iid(0, σ2ε )

Forecasts: f Ut = bβxt+1 and f Rt = eβxt+1. If bβ and eβ independent
λ� =

tr(Var(bβ))
tr
�
Var

�bβ) + Var(eβ�+ �bias(eβ)�2�
λ� � 0 (restrictions not useful) if large bias of restricted
estimator (, restrictions too misspeci�ed to be useful).

λ� � 1 (restrictions useful) if large variance of unrestricted
estimator (, usefulness due to reduction in estimation
uncertainty)
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estimator (, usefulness due to reduction in estimation
uncertainty)
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Limitations of statistical measures of accuracy

Usefulness of no-arbitrage restrictions may be simply due to a
reduction in dimensionality

Generally true for out-of-sample comparisons based on MSE
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Economic loss function. Portfolio utility loss

Similar to West, Edison and Cho (1993)

Bond portfolio w 0yt+1. Optimal weights for quadratic utility

w� = argmin
w

n
w 0Et [yt+1]�

γ

2
w 0Σw

o
Σ = Var(yt+1) and γ = CRRA/ (CRRA+ 1)
Classical solution (Markowitz, 1952)

w� = C1 + C2Et [yt+1] ,

C1 =
Σ�1ι

ι0Σ�1ι
, C2 =

1
γ

�
Σ�1 � Σ�1ιι0Σ�1

ι0Σ�1ι

�
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Economic loss function. Portfolio utility loss

Di¤erent conditional mean forecasts , di¤erent weights

For the combination forecast

w� (λ) = C1 + C2
�
f Rt + (1� λ)(f Ut � f Rt )

�
Measure of usefulness

λ� = arg min
λ2R

h
�w� (λ)0 E [yt+1] +

γ

2
w� (λ)0 Σw� (λ)

i
=

E
�
(f Rt � f Ut )0C 02

�
yt+1 � γΣ

�
C1 + C2f Ut

���
E
�
γ(f Rt � f Ut )0C 02ΣC2(f Rt � f Ut )

�
Estimate by substituting E [�] with out-of-sample mean (global)
or rolling out-of-sample means (local)
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Empirical application. Ang and Piazzesi�s model

yt = vector of yields of di¤erent maturities (1, 3, 12, 36, 60
months)

State-space representation:

yt = A+ BFt + vt
Ft = ΨFt�1 +Ωεt

Ft contains three latent factors (� level, slope and curvature of
term structure)
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Empirical application. AP model as a restricted
VAR

No-arbitrage assumption restricts the elements of A and B

Ān+1 = Ān + B̄ 0n(�Λ0) + 0.5B̄ 0nΩΩ0B̄n � δ0
B̄ 0n+1 = B̄

0
n(Ψ�ΩΛ1)� δ01

with An = �Ān/n, Bn = �B̄n/n, Ā1 = �δ0 and B̄1 = �δ1

Λ0 and Λ1 are such that Λt = Λ0 +Λ1Ft , with Λt = market
prices of risk

Λ1 6= 0 =) time-varying risk premium

Λ1 = 0 =) constant risk premium
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Empirical application. AP model as a restricted
VAR

AP state-space model � MA(∞) =) approximate with VAR(3)

Y = XΦ+ U

Impose the restrictions on the VAR by writing the sample
likelihood of Y as

jΣu j�T/2 expf�0.5tr [Σ�1u (Γ�yy �Φ0Γ�xy � Γ�0xyΦ+Φ0Γ�xxΦ)]g

Γ�yy , Γ�yx , Γ�xx = moments implied by state-space
Estimate by ML =) no-arbitrage restricted estimator

The unrestricted estimator is the OLS estimator
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Empirical results

VERY PRELIMINARY....
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Quadratic loss. Global measure of usefulness

NA vs. unrestricted VAR

Yields bλ Test of H0 : NA restrictions useless
1-month 0.427 4.711*
3-month 0.655 3.547*
12-month 0.979 5.374*
36-month 0.814 4.823*
60-month 0.826 5.424*
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Quadratic loss. Global measure of usefulness

NA with constant risk premium vs. unrestricted VAR

Yields bλ Test of H0 : NA restrictions useless
1-month 0.337 3.596*
3-month 0.785 4.559*
12-month 0.796 4.777*
36-month 0.912 5.894*
60-month 0.742 5.251*
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Quadratic loss. Global measure of usefulness

NA vs. random walk

Yields bλ Test of H0 : NA restrictions useless
1-month 0.516 4.649*
3-month -0.110 -0.526
12-month 0.276 0.828
36-month 0.099 0.337
60-month 0.274 0.668
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Quadratic loss. Local measure of usefulness

NA vs. unrestricted VAR
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Quadratic loss. Local measure of usefulness

NA with constant risk premium vs. unrestricted VAR
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Quadratic loss. Local measure of usefulness

NA vs. random walk
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Portfolio utility loss. Global measure of usefulness

Results for CRRA = 1

bλ H0 : NA restr. useless
NA vs. unrestricted VAR 0.416 23.33�

NA with const.risk premium 0.199 26.80�

vs. unrestricted VAR

NA vs. random walk 0.512 63.25�
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Portfolio utility loss. Local measure of usefulness

NA vs. unrestricted VAR
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Portfolio utility loss. Local measure of usefulness

NA with constant risk premium vs. unrestricted VAR
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Portfolio utility loss. Local measure of usefulness

NA vs. random walk
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Conclusion. Theoretical framework

No-arbitrage a¢ ne term structure model = VAR with
theory-based parameter restrictions

Proposed a framework for measuring and performing inference
about the usefulness of restrictions for forecasting

Usefulness depends on the forecaster�s loss function

Considered both global and local measures
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Conclusion. Back to our initial questions

Are no-arbitrage restrictions only useful because they reduce
estimation error?

Yes. In terms of statistical accuracy, they are no better than
atheoretical ways to do the same

Are the results di¤erent when considering economic vs.
statistical measures of accuracy?

Yes. Dimension reduction not so important economically

How important is the fact that no-arbitrage restrictions
incorporate a time-varying risk premium?

Not important for statistical accuracy, but essential for
constructing bond portfolios

Has the usefulness of the restrictions changed over time?

Yes, they have become less useful
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